KREMEN Реклама
KREMEN Реклама

Marlin 2.0 SKR 1.1 проблема с Homing большой дельты и калибровкой

lirik61
Идет загрузка
Загрузка
23.05.2021
2061
9
Вопросы и ответы

Такая проблема, имеем большую дельту, рабочая высота где-то 1538 мм. рабочий диаметр 560мм.

Marlin 2.0 BTT SKR 1.1 mini

Проблема с автокалибровкой, бедлевенгиом, при первой итерации все точки нормально проходит, потом бошка проходит 100мм вверх и вылазиет ошибка еррор хоминг.

Таже хрень с бедлевенгом, бошка проходит все точки, потом зависает в одном месте, опускается на 10мм и вылазиет ошибка.... уже устал мучатся с калибровкой стола.... почти кило пластика убил на калибровку....

#pragma once

#define CONFIGURATION_H_VERSION 020000

#define SHOW_BOOTSCREEN

#define SERIAL_PORT -1

#define SERIAL_PORT_2 1

#defi

#ifndef MOTHERBOARD

  #define MOTHERBOARD BOARD_BIGTREE_SKR_MINI_V1_1

#endif

// Name displayed in the LCD "Ready" message and Info menu

#define CUSTOM_MACHINE_NAME "BidDelta v2"

// @section extruder

// This defines the number of extruders

// :[1, 2, 3, 4, 5, 6]

#define EXTRUDERS 1

// Generally expected filament diameter (1.75, 2.85, 3.0, ...). Used for Volumetric, Filament Width Sensor, etc.

#define DEFAULT_NOMINAL_FILAMENT_DIA 1.75

// For Cyclops or any "multi-extruder" that shares a single nozzle.

//#define SINGLENOZZLE

/

#define TEMP_SENSOR_0 11

#define TEMP_SENSOR_1 0

#define TEMP_SENSOR_2 0

#define TEMP_SENSOR_3 0

#define TEMP_SENSOR_4 0

#define TEMP_SENSOR_5 0

#define TEMP_SENSOR_BED 11

#define TEMP_SENSOR_CHAMBER 0

// Dummy thermistor constant temperature readings, for use with 998 and 999

#define DUMMY_THERMISTOR_998_VALUE 25

#define DUMMY_THERMISTOR_999_VALUE 100

// Use temp sensor 1 as a redundant sensor with sensor 0. If the readings

// from the two sensors differ too much the print will be aborted.

//#define TEMP_SENSOR_1_AS_REDUNDANT

#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 5

#define TEMP_RESIDENCY_TIME 10 // (seconds) Time to wait for hotend to "settle" in M109

#define TEMP_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer

#define TEMP_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target

#define TEMP_BED_RESIDENCY_TIME 0 // (seconds) Time to wait for bed to "settle" in M190

#define TEMP_BED_WINDOW 2 // (°C) Temperature proximity for the "temperature reached" timer

#define TEMP_BED_HYSTERESIS 5 // (°C) Temperature proximity considered "close enough" to the target

// Below this temperature the heater will be switched off

// because it probably indicates a broken thermistor wire.

#define HEATER_0_MINTEMP 5

#define HEATER_1_MINTEMP 5

#define HEATER_2_MINTEMP 5

#define HEATER_3_MINTEMP 5

#define HEATER_4_MINTEMP 5

#define HEATER_5_MINTEMP 5

#define BED_MINTEMP 5

// Above this temperature the heater will be switched off.

// This can protect components from overheating, but NOT from shorts and failures.

// (Use MINTEMP for thermistor short/failure protection.)

#define HEATER_0_MAXTEMP 275

#define HEATER_1_MAXTEMP 275

#define HEATER_2_MAXTEMP 275

#define HEATER_3_MAXTEMP 275

#define HEATER_4_MAXTEMP 275

#define HEATER_5_MAXTEMP 275

#define BED_MAXTEMP 150

/

  #define DEFAULT_Kp 22.2

  #define DEFAULT_Ki 1.08

  #define DEFAULT_Kd 114

  // MakerGear

  //#define DEFAULT_Kp 7.0

  //#define DEFAULT_Ki 0.1

  //#define DEFAULT_Kd 12

  // Mendel Parts V9 on 12V

  //#define DEFAULT_Kp 63.0

  //#define DEFAULT_Ki 2.25

  //#define DEFAULT_Kd 440

#endif // PIDTEMP

//#define PIDTEMPBED

//#define BED_LIMIT_SWITCHING

/

 */

#define MAX_BED_POWER 155 // limits duty cycle to bed; 255=full current

#if ENABLED(PIDTEMPBED)

  //#define MIN_BED_POWER 0

  //#define PID_BED_DEBUG // Sends debug data to the serial port.

  //120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)

  //from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)

  #define DEFAULT_bedKp 10.00

  #define DEFAULT_bedKi .023

  #define DEFAULT_bedKd 305.4

  //120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)

  //from pidautotune

  //#define DEFAULT_bedKp 97.1

  //#define DEFAULT_bedKi 1.41

  //#define DEFAULT_bedKd 1675.16

  // FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.

#endif // PIDTEMPBED

// @section extruder

#define PREVENT_LENGTHY_EXTRUDE

#define EXTRUDE_MAXLENGTH 200

//================

#define DELTA

#if ENABLED(DELTA)

  // Make delta curves from many straight lines (linear interpolation).

  // This is a trade-off between visible corners (not enough segments)

  // and processor overload (too many expensive sqrt calls).

  #define DELTA_SEGMENTS_PER_SECOND 200

  // After homing move down to a height where XY movement is unconstrained

  //#define DELTA_HOME_TO_SAFE_ZONE

  // Delta calibration menu

  // uncomment to add three points calibration menu option.

  // See http://minow.blogspot.com/index.html#4918805519571907051

  #define DELTA_CALIBRATION_MENU

  // uncomment to add G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)

  #define DELTA_AUTO_CALIBRATION

  // NOTE NB all values for DELTA_* values MUST be floating point, so always have a decimal point in them

  #if ENABLED(DELTA_AUTO_CALIBRATION)

    // set the default number of probe points : n*n (1 -> 7)

    #define DELTA_CALIBRATION_DEFAULT_POINTS 4

  #endif

  #if EITHER(DELTA_AUTO_CALIBRATION, DELTA_CALIBRATION_MENU)

    // Set the steprate for papertest probing

    #define PROBE_MANUALLY_STEP 0.1 // (mm)

  #endif

  // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).

  #define DELTA_PRINTABLE_RADIUS 250.0 // (mm)

  // Center-to-center distance of the holes in the diagonal push rods.

  #define DELTA_DIAGONAL_ROD 688.0 // (mm)

  // Distance between bed and nozzle Z home position

  #define DELTA_HEIGHT 1586.6 // (mm) Get this value from G33 auto calibrate

  #define DELTA_ENDSTOP_ADJ { -0.0, -2,777 -7.366 } // Get these values from G33 auto calibrate

  // Horizontal distance bridged by diagonal push rods when effector is centered.

  #define DELTA_RADIUS 298.8 // (mm) Get this value from G33 auto calibrate

  // Trim adjustments for individual towers

  // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0

  // measured in degrees anticlockwise looking from above the printer

  #define DELTA_TOWER_ANGLE_TRIM { -0.071, 0.341, -0.271 } // Get these values from G33 auto calibrate

  // Delta radius and diagonal rod adjustments (mm)

  //#define DELTA_RADIUS_TRIM_TOWER { 0.0, 0.0, 0.0 }

  //#define DELTA_DIAGONAL_ROD_TRIM_TOWER { 0.0, 0.0, 0.0 }

#endif

//===========================================================================

//============================== Endstop Settings ===========================

//===========================================================================

// @section homing

// Specify here all the endstop connectors that are connected to any endstop or probe.

// Almost all printers will be using one per axis. Probes will use one or more of the

// extra connectors. Leave undefined any used for non-endstop and non-probe purposes.

//#define USE_XMIN_PLUG

//#define USE_YMIN_PLUG

#define USE_ZMIN_PLUG // a Z probe

#define USE_XMAX_PLUG

#define USE_YMAX_PLUG

#define USE_ZMAX_PLUG

// Enable pullup for all endstops to prevent a floating state

#define ENDSTOPPULLUPS

#if DISABLED(ENDSTOPPULLUPS)

  // Disable ENDSTOPPULLUPS to set pullups individually

  //#define ENDSTOPPULLUP_XMAX

  //#define ENDSTOPPULLUP_YMAX

  //#define ENDSTOPPULLUP_ZMAX

  //#define ENDSTOPPULLUP_XMIN

  //#define ENDSTOPPULLUP_YMIN

  //#define ENDSTOPPULLUP_ZMIN

  //#define ENDSTOPPULLUP_ZMIN_PROBE

#endif

// Enable pulldown for all endstops to prevent a floating state

//#define ENDSTOPPULLDOWNS

#if DISABLED(ENDSTOPPULLDOWNS)

  // Disable ENDSTOPPULLDOWNS to set pulldowns individually

  //#define ENDSTOPPULLDOWN_XMAX

  //#define ENDSTOPPULLDOWN_YMAX

  //#define ENDSTOPPULLDOWN_ZMAX

  //#define ENDSTOPPULLDOWN_XMIN

  //#define ENDSTOPPULLDOWN_YMIN

  //#define ENDSTOPPULLDOWN_ZMIN

  //#define ENDSTOPPULLDOWN_ZMIN_PROBE

#endif

// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).

#define X_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.

#define Y_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.

#define Z_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.

#define X_MAX_ENDSTOP_INVERTING true // Set to true to invert the logic of the endstop.

#define Y_MAX_ENDSTOP_INVERTING true // Set to true to invert the logic of the endstop.

#define Z_MAX_ENDSTOP_INVERTING true // Set to true to invert the logic of the endstop.

#define Z_MIN_PROBE_ENDSTOP_INVERTING false // Set to true to invert the logic of the probe.

/**

 * Stepper Drivers

 *

 * These settings allow Marlin to tune stepper driver timing and enable advanced options for

 * stepper drivers that support them. You may also override timing options in Configuration_adv.h.

 *

 * A4988 is assumed for unspecified drivers.

 *

 * Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100,

 * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,

 * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,

 * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,

 * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE

 * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']

 */

#define X_DRIVER_TYPE LV8729

#define Y_DRIVER_TYPE LV8729

#define Z_DRIVER_TYPE LV8729

//#define X2_DRIVER_TYPE A4988

//#define Y2_DRIVER_TYPE A4988

//#define Z2_DRIVER_TYPE A4988

//#define Z3_DRIVER_TYPE A4988

#define E0_DRIVER_TYPE LV8729

//#define E1_DRIVER_TYPE A4988

//#define E2_DRIVER_TYPE A4988

//#define E3_DRIVER_TYPE A4988

//#define E4_DRIVER_TYPE A4988

//#define E5_DRIVER_TYPE A4988

// Enable this feature if all enabled endstop pins are interrupt-capable.

// This will remove the need to poll the interrupt pins, saving many CPU cycles.

//#define ENDSTOP_INTERRUPTS_FEATURE

/**

/**

 * Default Axis Steps Per Unit (steps/mm)

 * Override with M92

 * X, Y, Z, E0 [, E1[, E2...]]

 */

// variables to calculate steps

#define XYZ_FULL_STEPS_PER_ROTATION 200

#define XYZ_MICROSTEPS 16

#define XYZ_BELT_PITCH 2

#define XYZ_PULLEY_TEETH 20

// delta speeds must be the same on xyz

#define DEFAULT_XYZ_STEPS_PER_UNIT ((XYZ_FULL_STEPS_PER_ROTATION) * (XYZ_MICROSTEPS) / double(XYZ_BELT_PITCH) / double(XYZ_PULLEY_TEETH))

#define DEFAULT_AXIS_STEPS_PER_UNIT { 640, 640, 640, 2600 } // default steps per unit for Kossel (GT2, 20 tooth)

/**

 * Default Max Feed Rate (mm/s)

 * Override with M203

 * X, Y, Z, E0 [, E1[, E2...]]

 */

#define DEFAULT_MAX_FEEDRATE { 200, 200, 200, 50 }

//#define LIMITED_MAX_FR_EDITING // Limit edit via M203 or LCD to DEFAULT_MAX_FEEDRATE * 2

#if ENABLED(LIMITED_MAX_FR_EDITING)

  #define MAX_FEEDRATE_EDIT_VALUES { 600, 600, 10, 50 } // ...or, set your own edit limits

#endif

/**

 * Default Max Acceleration (change/s) change = mm/s

 * (Maximum start speed for accelerated moves)

 * Override with M201

 * X, Y, Z, E0 [, E1[, E2...]]

 */

#define DEFAULT_MAX_ACCELERATION { 9000, 9000, 9000, 10000 }

//#define LIMITED_MAX_ACCEL_EDITING // Limit edit via M201 or LCD to DEFAULT_MAX_ACCELERATION * 2

#if ENABLED(LIMITED_MAX_ACCEL_EDITING)

  #define MAX_ACCEL_EDIT_VALUES { 6000, 6000, 200, 20000 } // ...or, set your own edit limits

#endif

/**

 * Default Acceleration (change/s) change = mm/s

 * Override with M204

 *

 * M204 P Acceleration

 * M204 R Retract Acceleration

 * M204 T Travel Acceleration

 */

#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration for printing moves

#define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration for retracts

#define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration for travel (non printing) moves

/**

 * Default Jerk limits (mm/s)

 * Override with M205 X Y Z E

 *

 * "Jerk" specifies the minimum speed change that requires acceleration.

 * When changing speed and direction, if the difference is less than the

 * value set here, it may happen instantaneously.

 */

#define CLASSIC_JERK

#if ENABLED(CLASSIC_JERK)

  #define DEFAULT_XJERK 10.0

  #define DEFAULT_YJERK DEFAULT_XJERK

  #define DEFAULT_ZJERK DEFAULT_XJERK // Must be same as XY for delta

  //#define LIMITED_JERK_EDITING // Limit edit via M205 or LCD to DEFAULT_aJERK * 2

  #if ENABLED(LIMITED_JERK_EDITING)

    #define MAX_JERK_EDIT_VALUES { 20, 20, 0.6, 10 } // ...or, set your own edit limits

  #endif

#endif

#define DEFAULT_EJERK 5.0 // May be used by Linear Advance

/**

 * Junction Deviation Factor

 *

 * See:

 * https://reprap.org/forum/read.php?1,739819

 * http://blog.kyneticcnc.com/2018/10/computing-junction-deviation-for-marlin.html

 */

#if DISABLED(CLASSIC_JERK)

  #define JUNCTION_DEVIATION_MM 0.013 // (mm) Distance from real junction edge

#endif

/**

 * S-Curve Acceleration

 *

 * This option eliminates vibration during printing by fitting a Bezier

 * curve to move acceleration, producing much smoother direction changes.

 *

 * See https://github.com/synthetos/TinyG/wiki/Jerk-Controlled-Motion-Explained

 */

//#define S_CURVE_ACCELERATION

//===========================================================================

//============================= Z Probe Options =============================

//===========================================================================

// @section probes

//

// See http://marlinfw.org/docs/configuration/probes.html

//

/**

 * Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN

 *

 * Enable this option for a probe connected to the Z Min endstop pin.

 */

#define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN

/**

 * Z_MIN_PROBE_PIN

 *

 * Define this pin if the probe is not connected to Z_MIN_PIN.

 * If not defined the default pin for the selected MOTHERBOARD

 * will be used. Most of the time the default is what you want.

 *

 * - The simplest option is to use a free endstop connector.

 * - Use 5V for powered (usually inductive) sensors.

 *

 * - RAMPS 1.3/1.4 boards may use the 5V, GND, and Aux4->D32 pin:

 * - For simple switches connect...

 * - normally-closed switches to GND and D32.

 * - normally-open switches to 5V and D32.

 *

 */

//#define Z_MIN_PROBE_PIN 32 // Pin 32 is the RAMPS default

/**

 * Probe Type

 *

 * Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc.

 * Activate one of these to use Auto Bed Leveling below.

 */

/**

 * The "Manual Probe" provides a means to do "Auto" Bed Leveling without a probe.

 * Use G29 repeatedly, adjusting the Z height at each point with movement commands

 * or (with LCD_BED_LEVELING) the LCD controller.

 */

//#define PROBE_MANUALLY

//#define MANUAL_PROBE_START_Z 0.2

/**

 * A Fix-Mounted Probe either doesn't deploy or needs manual deployment.

 * (e.g., an inductive probe or a nozzle-based probe-switch.)

 */

//#define FIX_MOUNTED_PROBE

/**

 * Z Servo Probe, such as an endstop switch on a rotating arm.

 */

//#define Z_PROBE_SERVO_NR 0 // Defaults to SERVO 0 connector.

//#define Z_SERVO_ANGLES { 70, 0 } // Z Servo Deploy and Stow angles

/**

 * The BLTouch probe uses a Hall effect sensor and emulates a servo.

 */

//#define BLTOUCH

/**

 * Touch-MI Probe by hotends.fr

 *

 * This probe is deployed and activated by moving the X-axis to a magnet at the edge of the bed.

 * By default, the magnet is assumed to be on the left and activated by a home. If the magnet is

 * on the right, enable and set TOUCH_MI_DEPLOY_XPOS to the deploy position.

 *

 * Also requires: BABYSTEPPING, BABYSTEP_ZPROBE_OFFSET, Z_SAFE_HOMING,

 * and a minimum Z_HOMING_HEIGHT of 10.

 */

//#define TOUCH_MI_PROBE

#if ENABLED(TOUCH_MI_PROBE)

  #define TOUCH_MI_RETRACT_Z 0.5 // Height at which the probe retracts

  //#define TOUCH_MI_DEPLOY_XPOS (X_MAX_BED + 2) // For a magnet on the right side of the bed

  //#define TOUCH_MI_MANUAL_DEPLOY // For manual deploy (LCD menu)

#endif

// A probe that is deployed and stowed with a solenoid pin (SOL1_PIN)

//#define SOLENOID_PROBE

// A sled-mounted probe like those designed by Charles Bell.

//#define Z_PROBE_SLED

//#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.

// A probe deployed by moving the x-axis, such as the Wilson II's rack-and-pinion probe designed by Marty Rice.

//#define RACK_AND_PINION_PROBE

#if ENABLED(RACK_AND_PINION_PROBE)

  #define Z_PROBE_DEPLOY_X X_MIN_POS

  #define Z_PROBE_RETRACT_X X_MAX_POS

#endif

/**

 * Allen key retractable z-probe as seen on many Kossel delta printers - http://reprap.org/wiki/Kossel#Automatic_bed_leveling_probe

 * Deploys by touching z-axis belt. Retracts by pushing the probe down. Uses Z_MIN_PIN.

 */

#define Z_PROBE_ALLEN_KEY

#if ENABLED(Z_PROBE_ALLEN_KEY)

  // 2 or 3 sets of coordinates for deploying and retracting the spring loaded touch probe on G29,

  // if servo actuated touch probe is not defined. Uncomment as appropriate for your printer/probe.

  // Kossel Mini

  #define Z_PROBE_ALLEN_KEY_DEPLOY_1 { 30.0, DELTA_PRINTABLE_RADIUS, 100.0 }

  #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE XY_PROBE_SPEED

  #define Z_PROBE_ALLEN_KEY_DEPLOY_2 { 0.0, DELTA_PRINTABLE_RADIUS, 100.0 }

  #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE (XY_PROBE_SPEED)/10

  #define Z_PROBE_ALLEN_KEY_DEPLOY_3 { 0.0, (DELTA_PRINTABLE_RADIUS) * 0.75, 100.0 }

  #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE XY_PROBE_SPEED

  #define Z_PROBE_ALLEN_KEY_STOW_DEPTH 20

  #define Z_PROBE_ALLEN_KEY_STOW_1 { -64.0, 56.0, 23.0 } // Move the probe into position

  #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE XY_PROBE_SPEED

  // Move the nozzle down further to push the probe into retracted position.

  #define Z_PROBE_ALLEN_KEY_STOW_2 { -64.0, 56.0, 23.0-(Z_PROBE_ALLEN_KEY_STOW_DEPTH) }

  #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE (XY_PROBE_SPEED)/10

  // Raise things back up slightly so we don't bump into anything

  #define Z_PROBE_ALLEN_KEY_STOW_3 { -64.0, 56.0, 23.0+(Z_PROBE_ALLEN_KEY_STOW_DEPTH) }

  #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE (XY_PROBE_SPEED)/2

  #define Z_PROBE_ALLEN_KEY_STOW_4 { 0.0, 0.0, 23.0+(Z_PROBE_ALLEN_KEY_STOW_DEPTH) }

  #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE XY_PROBE_SPEED

#endif // Z_PROBE_ALLEN_KEY

/**

 * Z Probe to nozzle (X,Y) offset, relative to (0, 0).

 *

 * In the following example the X and Y offsets are both positive:

 *

 * #define NOZZLE_TO_PROBE_OFFSET { 10, 10, 0 }

 *

 * +-- BACK ---+

 * | |

 * L | (+) P | R = 1 are valid here.

 *

 * Example: `M851 Z-5` with a CLEARANCE of 4 => 9mm from bed to nozzle.

 * But: `M851 Z+1` with a CLEARANCE of 2 => 2mm from bed to nozzle.

 */

#define Z_CLEARANCE_DEPLOY_PROBE 50 // Z Clearance for Deploy/Stow

#define Z_CLEARANCE_BETWEEN_PROBES 30 // Z Clearance between probe points

#define Z_CLEARANCE_MULTI_PROBE 30 // Z Clearance between multiple probes

#define Z_AFTER_PROBING 50 // Z position after probing is done

#define Z_PROBE_LOW_POINT -20 // Farthest distance below the trigger-point to go before stopping

// For M851 give a range for adjusting the Z probe offset

#define Z_PROBE_OFFSET_RANGE_MIN -30

#define Z_PROBE_OFFSET_RANGE_MAX 50

// Enable the M48 repeatability test to test probe accuracy

//#define Z_MIN_PROBE_REPEATABILITY_TEST

// Before deploy/stow pause for user confirmation

//#define PAUSE_BEFORE_DEPLOY_STOW

#if ENABLED(PAUSE_BEFORE_DEPLOY_STOW)

  //#define PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED // For Manual Deploy Allenkey Probe

#endif

/**

 * Enable one or more of the following if probing seems unreliable.

 * Heaters and/or fans can be disabled during probing to minimize electrical

 * noise. A delay can also be added to allow noise and vibration to settle.

 * These options are most useful for the BLTouch probe, but may also improve

 * readings with inductive probes and piezo sensors.

 */

//#define PROBING_HEATERS_OFF // Turn heaters off when probing

#if ENABLED(PROBING_HEATERS_OFF)

  //#define WAIT_FOR_BED_HEATER // Wait for bed to heat back up between probes (to improve accuracy)

#endif

//#define PROBING_FANS_OFF // Turn fans off when probing

//#define PROBING_STEPPERS_OFF // Turn steppers off (unless needed to hold position) when probing

//#define DELAY_BEFORE_PROBING 200 // (ms) To prevent vibrations from triggering piezo sensors

// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1

// :{ 0:'Low', 1:'High' }

#define X_ENABLE_ON 0

#define Y_ENABLE_ON 0

#define Z_ENABLE_ON 0

#define E_ENABLE_ON 0 // For all extruders

// Disables axis stepper immediately when it's not being used.

// WARNING: When motors turn off there is a chance of losing position accuracy!

#define DISABLE_X false

#define DISABLE_Y false

#define DISABLE_Z false

// Warn on display about possibly reduced accuracy

//#define DISABLE_REDUCED_ACCURACY_WARNING

// @section extruder

#define DISABLE_E false // For all extruders

#define DISABLE_INACTIVE_EXTRUDER // Keep only the active extruder enabled

// @section machine

// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.

#define INVERT_X_DIR true

#define INVERT_Y_DIR true

#define INVERT_Z_DIR true

// @section extruder

// For direct drive extruder v9 set to true, for geared extruder set to false.

#define INVERT_E0_DIR false

#define INVERT_E1_DIR false

#define INVERT_E2_DIR false

#define INVERT_E3_DIR false

#define INVERT_E4_DIR false

#define INVERT_E5_DIR false

// @section homing

//#define NO_MOTION_BEFORE_HOMING // Inhibit movement until all axes have been homed

//#define UNKNOWN_Z_NO_RAISE // Don't raise Z (lower the bed) if Z is "unknown." For beds that fall when Z is powered off.

//#define Z_HOMING_HEIGHT 15 // (mm) Minimal Z height before homing (G28) for Z clearance above the bed, clamps, ...

                             // Be sure you have this distance over your Z_MAX_POS in case.

// Direction of endstops when homing; 1=MAX, -1=MIN

// :[-1,1]

#define X_HOME_DIR 1 // deltas always home to max

#define Y_HOME_DIR 1

#define Z_HOME_DIR 1

// @section machine

// The size of the print bed

#define X_BED_SIZE ((DELTA_PRINTABLE_RADIUS) * 2)

#define Y_BED_SIZE ((DELTA_PRINTABLE_RADIUS) * 2)

// Travel limits (mm) after homing, corresponding to endstop positions.

#define X_MIN_POS -(DELTA_PRINTABLE_RADIUS)

#define Y_MIN_POS -(DELTA_PRINTABLE_RADIUS)

#define Z_MIN_POS -10

#define X_MAX_POS DELTA_PRINTABLE_RADIUS

#define Y_MAX_POS DELTA_PRINTABLE_RADIUS

#define Z_MAX_POS MANUAL_Z_HOME_POS

/**

 * Software Endstops

 *

 * - Prevent moves outside the set machine bounds.

 * - Individual axes can be disabled, if desired.

 * - X and Y only apply to Cartesian robots.

 * - Use 'M211' to set software endstops on/off or report current state

 */

// Min software endstops constrain movement within minimum coordinate bounds

#define MIN_SOFTWARE_ENDSTOPS

#if ENABLED(MIN_SOFTWARE_ENDSTOPS)

  #define MIN_SOFTWARE_ENDSTOP_X

  #define MIN_SOFTWARE_ENDSTOP_Y

  #define MIN_SOFTWARE_ENDSTOP_Z

#endif

// Max software endstops constrain movement within maximum coordinate bounds

#define MAX_SOFTWARE_ENDSTOPS

#if ENABLED(MAX_SOFTWARE_ENDSTOPS)

  #define MAX_SOFTWARE_ENDSTOP_X

  #define MAX_SOFTWARE_ENDSTOP_Y

  #define MAX_SOFTWARE_ENDSTOP_Z

#endif

#if EITHER(MIN_SOFTWARE_ENDSTOPS, MAX_SOFTWARE_ENDSTOPS)

  //#define SOFT_ENDSTOPS_MENU_ITEM // Enable/Disable software endstops from the LCD

#endif

/**

 * Filament Runout Sensors

 * Mechanical or opto endstops are used to check for the presence of filament.

 *

 * RAMPS-based boards use SERVO3_PIN for the first runout sensor.

 * For other boards you may need to define FIL_RUNOUT_PIN, FIL_RUNOUT2_PIN, etc.

 * By default the firmware assumes HIGH=FILAMENT PRESENT.

 */

//#define FILAMENT_RUNOUT_SENSOR

#if ENABLED(FILAMENT_RUNOUT_SENSOR)

  #define NUM_RUNOUT_SENSORS 1 // Number of sensors, up to one per extruder. Define a FIL_RUNOUT#_PIN for each.

  #define FIL_RUNOUT_INVERTING false // Set to true to invert the logic of the sensor.

  #define FIL_RUNOUT_PULLUP // Use internal pullup for filament runout pins.

  //#define FIL_RUNOUT_PULLDOWN // Use internal pulldown for filament runout pins.

  // Set one or more commands to execute on filament runout.

  // (After 'M412 H' Marlin will ask the host to handle the process.)

  #define FILAMENT_RUNOUT_SCRIPT "M600"

  // After a runout is detected, continue printing this length of filament

  // before executing the runout script. Useful for a sensor at the end of

  // a feed tube. Requires 4 bytes SRAM per sensor, plus 4 bytes overhead.

  //#define FILAMENT_RUNOUT_DISTANCE_MM 25

  #ifdef FILAMENT_RUNOUT_DISTANCE_MM

    // Enable this option to use an encoder disc that toggles the runout pin

    // as the filament moves. (Be sure to set FILAMENT_RUNOUT_DISTANCE_MM

    // large enough to avoid false positives.)

    //#define FILAMENT_MOTION_SENSOR

  #endif

#endif

//===========================================================================

//=============================== Bed Leveling ==============================

//===========================================================================

// @section calibrate

/**

 * Choose one of the options below to enable G29 Bed Leveling. The parameters

 * and behavior of G29 will change depending on your selection.

 *

 * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!

 *

 * - AUTO_BED_LEVELING_3POINT

 * Probe 3 arbitrary points on the bed (that aren't collinear)

 * You specify the XY coordinates of all 3 points.

 * The result is a single tilted plane. Best for a flat bed.

 *

 * - AUTO_BED_LEVELING_LINEAR

 * Probe several points in a grid.

 * You specify the rectangle and the density of sample points.

 * The result is a single tilted plane. Best for a flat bed.

 *

 * - AUTO_BED_LEVELING_BILINEAR

 * Probe several points in a grid.

 * You specify the rectangle and the density of sample points.

 * The result is a mesh, best for large or uneven beds.

 *

 * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)

 * A comprehensive bed leveling system combining the features and benefits

 * of other systems. UBL also includes integrated Mesh Generation, Mesh

 * Validation and Mesh Editing systems.

 *

 * - MESH_BED_LEVELING

 * Probe a grid manually

 * The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)

 * For machines without a probe, Mesh Bed Leveling provides a method to perform

 * leveling in steps so you can manually adjust the Z height at each grid-point.

 * With an LCD controller the process is guided step-by-step.

 */

//#define AUTO_BED_LEVELING_3POINT

#define AUTO_BED_LEVELING_LINEAR

//#define AUTO_BED_LEVELING_BILINEAR

//#define AUTO_BED_LEVELING_UBL

//#define MESH_BED_LEVELING

/**

 * Normally G28 leaves leveling disabled on completion. Enable

 * this option to have G28 restore the prior leveling state.

 */

//#define RESTORE_LEVELING_AFTER_G28

/**

 * Enable detailed logging of G28, G29, M48, etc.

 * Turn on with the command 'M111 S32'.

 * NOTE: Requires a lot of PROGMEM!

 */

//#define DEBUG_LEVELING_FEATURE

#if ANY(MESH_BED_LEVELING, AUTO_BED_LEVELING_BILINEAR, AUTO_BED_LEVELING_UBL)

  // Gradually reduce leveling correction until a set height is reached,

  // at which point movement will be level to the machine's XY plane.

  // The height can be set with M420 Z

  //#define ENABLE_LEVELING_FADE_HEIGHT

  // For Cartesian machines, instead of dividing moves on mesh boundaries,

  // split up moves into short segments like a Delta. This follows the

  // contours of the bed more closely than edge-to-edge straight moves.

  #define SEGMENT_LEVELED_MOVES

  #define LEVELED_SEGMENT_LENGTH 5.0 // (mm) Length of all segments (except the last one)

  /**

   * Enable the G26 Mesh Validation Pattern tool.

   */

  //#define G26_MESH_VALIDATION

  #if ENABLED(G26_MESH_VALIDATION)

    #define MESH_TEST_NOZZLE_SIZE 0.4 // (mm) Diameter of primary nozzle.

    #define MESH_TEST_LAYER_HEIGHT 0.2 // (mm) Default layer height for the G26 Mesh Validation Tool.

    #define MESH_TEST_HOTEND_TEMP 205 // (°C) Default nozzle temperature for the G26 Mesh Validation Tool.

    #define MESH_TEST_BED_TEMP 60 // (°C) Default bed temperature for the G26 Mesh Validation Tool.

    #define G26_XY_FEEDRATE 20 // (mm/s) Feedrate for XY Moves for the G26 Mesh Validation Tool.

  #endif

#endif

#if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_BILINEAR)

  // Set the number of grid points per dimension.

  // Works best with 5 or more points in each dimension.

  #define GRID_MAX_POINTS_X 9

  #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

  // Probe along the Y axis, advancing X after each column

  //#define PROBE_Y_FIRST

  #if ENABLED(AUTO_BED_LEVELING_BILINEAR)

    // Beyond the probed grid, continue the implied tilt?

    // Default is to maintain the height of the nearest edge.

    //#define EXTRAPOLATE_BEYOND_GRID

    //

    // Experimental Subdivision of the grid by Catmull-Rom method.

    // Synthesizes intermediate points to produce a more detailed mesh.

    //

    //#define ABL_BILINEAR_SUBDIVISION

    #if ENABLED(ABL_BILINEAR_SUBDIVISION)

      // Number of subdivisions between probe points

      #define BILINEAR_SUBDIVISIONS 3

    #endif

  #endif

#elif ENABLED(AUTO_BED_LEVELING_UBL)

  //===========================================================================

  //========================= Unified Bed Leveling ============================

  //===========================================================================

  //#define MESH_EDIT_GFX_OVERLAY // Display a graphics overlay while editing the mesh

  #define MESH_INSET 1 // Set Mesh bounds as an inset region of the bed

  #define GRID_MAX_POINTS_X 10 // Don't use more than 15 points per axis, implementation limited.

  #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

  #define UBL_MESH_EDIT_MOVES_Z // Sophisticated users prefer no movement of nozzle

  #define UBL_SAVE_ACTIVE_ON_M500 // Save the currently active mesh in the current slot on M500

  //#define UBL_Z_RAISE_WHEN_OFF_MESH 2.5 // When the nozzle is off the mesh, this value is used

                                          // as the Z-Height correction value.

#elif ENABLED(MESH_BED_LEVELING)

  //===========================================================================

  //=================================== Mesh ==================================

  //===========================================================================

  #define MESH_INSET 10 // Set Mesh bounds as an inset region of the bed

  #define GRID_MAX_POINTS_X 3 // Don't use more than 7 points per axis, implementation limited.

  #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

  //#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS

#endif // BED_LEVELING

/**

 * Add a bed leveling sub-menu for ABL or MBL.

 * Include a guided procedure if manual probing is enabled.

 */

#define LCD_BED_LEVELING

#if ENABLED(LCD_BED_LEVELING)

  #define MESH_EDIT_Z_STEP 0.1 // (mm) Step size while manually probing Z axis.

  #define LCD_PROBE_Z_RANGE 4 // (mm) Z Range centered on Z_MIN_POS for LCD Z adjustment

  //#define MESH_EDIT_MENU // Add a menu to edit mesh points

#endif

// Add a menu item to move between bed corners for manual bed adjustment

#define LEVEL_BED_CORNERS

#if ENABLED(LEVEL_BED_CORNERS)

  #define LEVEL_CORNERS_INSET 30 // (mm) An inset for corner leveling

  #define LEVEL_CORNERS_Z_HOP 4.0 // (mm) Move nozzle up before moving between corners

  #define LEVEL_CORNERS_HEIGHT 0.0 // (mm) Z height of nozzle at leveling points

  //#define LEVEL_CENTER_TOO // Move to the center after the last corner

#endif

/**

 * Commands to execute at the end of G29 probing.

 * Useful to retract or move the Z probe out of the way.

 */

//#define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10"

// @section homing

// The center of the bed is at (X=0, Y=0)

#define BED_CENTER_AT_0_0

// Manually set the home position. Leave these undefined for automatic settings.

// For DELTA this is the top-center of the Cartesian print volume.

//#define MANUAL_X_HOME_POS 0

//#define MANUAL_Y_HOME_POS 0

#define MANUAL_Z_HOME_POS DELTA_HEIGHT // Distance between the nozzle to printbed after homing

// Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.

//

// With this feature enabled:

//

// - Allow Z homing only after X and Y homing AND stepper drivers still enabled.

// - If stepper drivers time out, it will need X and Y homing again before Z homing.

// - Move the Z probe (or nozzle) to a defined XY point before Z Homing when homing all axes (G28).

// - Prevent Z homing when the Z probe is outside bed area.

//

//#define Z_SAFE_HOMING

#if ENABLED(Z_SAFE_HOMING)

  #define Z_SAFE_HOMING_X_POINT ((X_BED_SIZE) / 2) // X point for Z homing when homing all axes (G28).

  #define Z_SAFE_HOMING_Y_POINT ((Y_BED_SIZE) / 2) // Y point for Z homing when homing all axes (G28).

#endif

// Delta only homes to Z

#define HOMING_FEEDRATE_Z (6000)

// Validate that endstops are triggered on homing moves

#define VALIDATE_HOMING_ENDSTOPS

// @section calibrate

/**

 * Bed Skew Compensation

 *

 * This feature corrects for misalignment in the XYZ axes.

 *

 * Take the following steps to get the bed skew in the XY plane:

 * 1. Print a test square (e.g., https://www.thingiverse.com/thing:2563185)

 * 2. For XY_DIAG_AC measure the diagonal A to C

 * 3. For XY_DIAG_BD measure the diagonal B to D

 * 4. For XY_SIDE_AD measure the edge A to D

 *

 * Marlin automatically computes skew factors from these measurements.

 * Skew factors may also be computed and set manually:

 *

 * - Compute AB : SQRT(2*AC*AC+2*BD*BD-4*AD*AD)/2

 * - XY_SKEW_FACTOR : TAN(PI/2-ACOS((AC*AC-AB*AB-AD*AD)/(2*AB*AD)))

 *

 * If desired, follow the same procedure for XZ and YZ.

 * Use these diagrams for reference:

 *

 * Y Z Z

 * ^ B-------C ^ B-------C ^ B-------C

 * | / / | / / | / /

 * | / / | / / | / /

 * | A-------D | A-------D | A-------D

 * +-------------->X +-------------->X +-------------->Y

 * XY_SKEW_FACTOR XZ_SKEW_FACTOR YZ_SKEW_FACTOR

 */

//#define SKEW_CORRECTION

#if ENABLED(SKEW_CORRECTION)

  // Input all length measurements here:

  #define XY_DIAG_AC 282.8427124746

  #define XY_DIAG_BD 282.8427124746

  #define XY_SIDE_AD 200

  // Or, set the default skew factors directly here

  // to override the above measurements:

  #define XY_SKEW_FACTOR 0.0

  //#define SKEW_CORRECTION_FOR_Z

  #if ENABLED(SKEW_CORRECTION_FOR_Z)

    #define XZ_DIAG_AC 282.8427124746

    #define XZ_DIAG_BD 282.8427124746

    #define YZ_DIAG_AC 282.8427124746

    #define YZ_DIAG_BD 282.8427124746

    #define YZ_SIDE_AD 200

    #define XZ_SKEW_FACTOR 0.0

    #define YZ_SKEW_FACTOR 0.0

  #endif

  // Enable this option for M852 to set skew at runtime

  //#define SKEW_CORRECTION_GCODE

#endif

//=============================================================================

//============================= Additional Features ===========================

//=============================================================================

// @section extras

/**

 * EEPROM

 *

 * Persistent storage to preserve configurable settings across reboots.

 *

 * M500 - Store settings to EEPROM.

 * M501 - Read settings from EEPROM. (i.e., Throw away unsaved changes)

 * M502 - Revert settings to "factory" defaults. (Follow with M500 to init the EEPROM.)

 */

#define EEPROM_SETTINGS // Persistent storage with M500 and M501

//#define DISABLE_M503 // Saves ~2700 bytes of PROGMEM. Disable for release!

#define EEPROM_CHITCHAT // Give feedback on EEPROM commands. Disable to save PROGMEM.

#if ENABLED(EEPROM_SETTINGS)

  //#define EEPROM_AUTO_INIT // Init EEPROM automatically on any errors.

#endif

//

// Host Keepalive

//

// When enabled Marlin will send a busy status message to the host

// every couple of seconds when it can't accept commands.

//

#define HOST_KEEPALIVE_FEATURE // Disable this if your host doesn't like keepalive messages

#define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between "busy" messages. Set with M113.

#define BUSY_WHILE_HEATING // Some hosts require "busy" messages even during heating

//

// M100 Free Memory Watcher

//

//#define M100_FREE_MEMORY_WATCHER // Add M100 (Free Memory Watcher) to debug memory usage

//

// G20/G21 Inch mode support

//

//#define INCH_MODE_SUPPORT

//

// M149 Set temperature units support

//

//#define TEMPERATURE_UNITS_SUPPORT

// @section temperature

// Preheat Constants

#define PREHEAT_1_LABEL "PLA"

#define PREHEAT_1_TEMP_HOTEND 180

#define PREHEAT_1_TEMP_BED 70

#define PREHEAT_1_FAN_SPEED 255 // Value from 0 to 255

#define PREHEAT_2_LABEL "ABS"

#define PREHEAT_2_TEMP_HOTEND 255

#define PREHEAT_2_TEMP_BED 80

#define PREHEAT_2_FAN_SPEED 255 // Value from 0 to 255

/**

 * Nozzle Park

 *

 * Park the nozzle at the given XYZ position on idle or G27.

 *

 * The "P" parameter controls the action applied to the Z axis:

 *

 * P0 (Default) If Z is below park Z raise the nozzle.

 * P1 Raise the nozzle always to Z-park height.

 * P2 Raise the nozzle by Z-park amount, limited to Z_MAX_POS.

 */

//#define NOZZLE_PARK_FEATURE

#if ENABLED(NOZZLE_PARK_FEATURE)

  // Specify a park position as { X, Y, Z_raise }

  #define NOZZLE_PARK_POINT { (X_MIN_POS + 10), 0, 20 }

  #define NOZZLE_PARK_XY_FEEDRATE 100 // (mm/s) X and Y axes feedrate (also used for delta Z axis)

  #define NOZZLE_PARK_Z_FEEDRATE 5 // (mm/s) Z axis feedrate (not used for delta printers)

#endif

/**

 * Clean Nozzle Feature -- EXPERIMENTAL

 *

 * Adds the G12 command to perform a nozzle cleaning process.

 *

 * Parameters:

 * P Pattern

 * S Strokes / Repetitions

 * T Triangles (P1 only)

 *

 * Patterns:

 * P0 Straight line (default). This process requires a sponge type material

 * at a fixed bed location. "S" specifies strokes (i.e. back-forth motions)

 * between the start / end points.

 *

 * P1 Zig-zag pattern between (X0, Y0) and (X1, Y1), "T" specifies the

 * number of zig-zag triangles to do. "S" defines the number of strokes.

 * Zig-zags are done in whichever is the narrower dimension.

 * For example, "G12 P1 S1 T3" will execute:

 *

 * --

 * | (X0, Y1) | /\ /\ /\ | (X1, Y1)

 * | | / \ / \ / \ |

 * A | | / \ / \ / \ |

 * | | / \ / \ / \ |

 * | (X0, Y0) | / \/ \/ \ | (X1, Y0)

 * -- +--------------------------------+

 * |________|_________|_________|

 * T1 T2 T3

 *

 * P2 Circular pattern with middle at NOZZLE_CLEAN_CIRCLE_MIDDLE.

 * "R" specifies the radius. "S" specifies the stroke count.

 * Before starting, the nozzle moves to NOZZLE_CLEAN_START_POINT.

 *

 * Caveats: The ending Z should be the same as starting Z.

 * Attention: EXPERIMENTAL. G-code arguments may change.

 *

 */

//#define NOZZLE_CLEAN_FEATURE

#if ENABLED(NOZZLE_CLEAN_FEATURE)

  // Default number of pattern repetitions

  #define NOZZLE_CLEAN_STROKES 12

  // Default number of triangles

  #define NOZZLE_CLEAN_TRIANGLES 3

  // Specify positions as { X, Y, Z }

  #define NOZZLE_CLEAN_START_POINT { 30, 30, (Z_MIN_POS + 1) }

  #define NOZZLE_CLEAN_END_POINT { 100, 60, (Z_MIN_POS + 1) }

  // Circular pattern radius

  #define NOZZLE_CLEAN_CIRCLE_RADIUS 6.5

  // Circular pattern circle fragments number

  #define NOZZLE_CLEAN_CIRCLE_FN 10

  // Middle point of circle

  #define NOZZLE_CLEAN_CIRCLE_MIDDLE NOZZLE_CLEAN_START_POINT

  // Move the nozzle to the initial position after cleaning

  #define NOZZLE_CLEAN_GOBACK

  // Enable for a purge/clean station that's always at the gantry height (thus no Z move)

  //#define NOZZLE_CLEAN_NO_Z

#endif

/**

 * Print Job Timer

 *

 * Automatically start and stop the print job timer on M104/M109/M190.

 *

 * M104 (hotend, no wait) - high temp = none, low temp = stop timer

 * M109 (hotend, wait) - high temp = start timer, low temp = stop timer

 * M190 (bed, wait) - high temp = start timer, low temp = none

 *

 * The timer can also be controlled with the following commands:

 *

 * M75 - Start the print job timer

 * M76 - Pause the print job timer

 * M77 - Stop the print job timer

 */

#define PRINTJOB_TIMER_AUTOSTART

/**

 * Print Counter

 *

 * Track statistical data such as:

 *

 * - Total print jobs

 * - Total successful print jobs

 * - Total failed print jobs

 * - Total time printing

 *

 * View the current statistics with M78.

 */

//#define PRINTCOUNTER

//=============================================================================

//============================= LCD and SD support ============================

//=============================================================================

// @section lcd

/**

 * LCD LANGUAGE

 *

 * Select the language to display on the LCD. These languages are available:

 *

 * en, an, bg, ca, cz, da, de, el, el_gr, es, eu, fi, fr, gl, hr, it, jp_kana,

 * ko_KR, nl, pl, pt, pt_br, ru, sk, tr, uk, vi, zh_CN, zh_TW, test

 *

 * :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cz':'Czech', 'da':'Danish', 'de':'German', 'el':'Greek', 'el_gr':'Greek (Greece)', 'es':'Spanish', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'gl':'Galician', 'hr':'Croatian', 'it':'Italian', 'jp_kana':'Japanese', 'ko_KR':'Korean (South Korea)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt_br':'Portuguese (Brazilian)', 'ru':'Russian', 'sk':'Slovak', 'tr':'Turkish', 'uk':'Ukrainian', 'vi':'Vietnamese', 'zh_CN':'Chinese (Simplified)', 'zh_TW':'Chinese (Traditional)', 'test':'TEST' }

 */

#define LCD_LANGUAGE en

/**

 * LCD Character Set

 *

 * Note: This option is NOT applicable to Graphical Displays.

 *

 * All character-based LCDs provide ASCII plus one of these

 * language extensions:

 *

 * - JAPANESE ... the most common

 * - WESTERN ... with more accented characters

 * - CYRILLIC ... for the Russian language

 *

 * To determine the language extension installed on your controller:

 *

 * - Compile and upload with LCD_LANGUAGE set to 'test'

 * - Click the controller to view the LCD menu

 * - The LCD will display Japanese, Western, or Cyrillic text

 *

 * See http://marlinfw.org/docs/development/lcd_language.html

 *

 * :['JAPANESE', 'WESTERN', 'CYRILLIC']

 */

#define DISPLAY_CHARSET_HD44780 JAPANESE

/**

 * Info Screen Style (0:Classic, 1:Prusa)

 *

 * :[0:'Classic', 1:'Prusa']

 */

#define LCD_INFO_SCREEN_STYLE 0

/**

 * SD CARD

 *

 * SD Card support is disabled by default. If your controller has an SD slot,

 * you must uncomment the following option or it won't work.

 *

 */

#define SDSUPPORT

/**

 * SD CARD: SPI SPEED

 *

 * Enable one of the following items for a slower SPI transfer speed.

 * This may be required to resolve "volume init" errors.

 */

//#define SPI_SPEED SPI_HALF_SPEED

//#define SPI_SPEED SPI_QUARTER_SPEED

//#define SPI_SPEED SPI_EIGHTH_SPEED

/**

 * SD CARD: ENABLE CRC

 *

 * Use CRC checks and retries on the SD communication.

 */

#define SD_CHECK_AND_RETRY

/**

 * LCD Menu Items

 *

 * Disable all menus and only display the Status Screen, or

 * just remove some extraneous menu items to recover space.

 */

//#define NO_LCD_MENUS

//#define SLIM_LCD_MENUS

//

// ENCODER SETTINGS

//

// This option overrides the default number of encoder pulses needed to

// produce one step. Should be increased for high-resolution encoders.

//

#define ENCODER_PULSES_PER_STEP 4

//

// Use this option to override the number of step signals required to

// move between next/prev menu items.

//

#define ENCODER_STEPS_PER_MENU_ITEM 1

/**

 * Encoder Direction Options

 *

 * Test your encoder's behavior first with both options disabled.

 *

 * Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION.

 * Reversed Menu Navigation only? Enable REVERSE_MENU_DIRECTION.

 * Reversed Value Editing only? Enable BOTH options.

 */

//

// This option reverses the encoder direction everywhere.

//

// Set this option if CLOCKWISE causes values to DECREASE

//

//#define REVERSE_ENCODER_DIRECTION

//

// This option reverses the encoder direction for navigating LCD menus.

//

// If CLOCKWISE normally moves DOWN this makes it go UP.

// If CLOCKWISE normally moves UP this makes it go DOWN.

//

//#define REVERSE_MENU_DIRECTION

//

// This option reverses the encoder direction for Select Screen.

//

// If CLOCKWISE normally moves LEFT this makes it go RIGHT.

// If CLOCKWISE normally moves RIGHT this makes it go LEFT.

//

//#define REVERSE_SELECT_DIRECTION

//

// Individual Axis Homing

//

// Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu.

//

//#define INDIVIDUAL_AXIS_HOMING_MENU

//

// SPEAKER/BUZZER

//

// If you have a speaker that can produce tones, enable it here.

// By default Marlin assumes you have a buzzer with a fixed frequency.

//

//#define SPEAKER

//

// The duration and frequency for the UI feedback sound.

// Set these to 0 to disable audio feedback in the LCD menus.

//

// Note: Test audio output with the G-Code:

// M300 S P

//

//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2

//#define LCD_FEEDBACK_FREQUENCY_HZ 5000

//=============================================================================

//======================== LCD / Controller Selection =========================

//======================== (Character-based LCDs) =========================

//=============================================================================

//

// RepRapDiscount Smart Controller.

// http://reprap.org/wiki/RepRapDiscount_Smart_Controller

//

// Note: Usually sold with a white PCB.

//

#define REPRAP_DISCOUNT_SMART_CONTROLLER

//

// Original RADDS LCD Display+Encoder+SDCardReader

// http://doku.radds.org/dokumentation/lcd-display/

//

//#define RADDS_DISPLAY

//

// ULTIMAKER Controller.

//

//#define ULTIMAKERCONTROLLER

//

// ULTIPANEL as seen on Thingiverse.

//

//#define ULTIPANEL

//

// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)

// http://reprap.org/wiki/PanelOne

//

//#define PANEL_ONE

//

// GADGETS3D G3D LCD/SD Controller

// http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel

//

// Note: Usually sold with a blue PCB.

//

//#define G3D_PANEL

//

// RigidBot Panel V1.0

// http://www.inventapart.com/

//

//#define RIGIDBOT_PANEL

//

// Makeboard 3D Printer Parts 3D Printer Mini Display 1602 Mini Controller

// https://www.aliexpress.com/item/Micromake-Makeboard-3D-Printer-Parts-3D-Printer-Mini-Display-1602-Mini-Controller-Compatible-with-Ramps-1/32765887917.html

//

//#define MAKEBOARD_MINI_2_LINE_DISPLAY_1602

//

// ANET and Tronxy 20x4 Controller

//

//#define ZONESTAR_LCD // Requires ADC_KEYPAD_PIN to be assigned to an analog pin.

                                  // This LCD is known to be susceptible to electrical interference

                                  // which scrambles the display. Pressing any button clears it up.

                                  // This is a LCD2004 display with 5 analog buttons.

//

// Generic 16x2, 16x4, 20x2, or 20x4 character-based LCD.

//

//#define ULTRA_LCD

//=============================================================================

//======================== LCD / Controller Selection =========================

//===================== (I2C and Shift-Register LCDs) =====================

//=============================================================================

//

// CONTROLLER TYPE: I2C

//

// Note: These controllers require the installation of Arduino's LiquidCrystal_I2C

// library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C

//

//

// Elefu RA Board Control Panel

// http://www.elefu.com/index.php?route=product/product&product_id=53

//

//#define RA_CONTROL_PANEL

//

// Sainsmart (YwRobot) LCD Displays

//

// These require F.Malpartida's LiquidCrystal_I2C library

// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home

//

//#define LCD_SAINSMART_I2C_1602

//#define LCD_SAINSMART_I2C_2004

//

// Generic LCM1602 LCD adapter

//

//#define LCM1602

//

// PANELOLU2 LCD with status LEDs,

// separate encoder and click inputs.

//

// Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later.

// For more info: https://github.com/lincomatic/LiquidTWI2

//

// Note: The PANELOLU2 encoder click input can either be directly connected to

// a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).

//

//#define LCD_I2C_PANELOLU2

//

// Panucatt VIKI LCD with status LEDs,

// integrated click & L/R/U/D buttons, separate encoder inputs.

//

//#define LCD_I2C_VIKI

//

// CONTROLLER TYPE: Shift register panels

//

//

// 2-wire Non-latching LCD SR from https://goo.gl/aJJ4sH

// LCD configuration: http://reprap.org/wiki/SAV_3D_LCD

//

//#define SAV_3DLCD

//

// 3-wire SR LCD with strobe using 74HC4094

// https://github.com/mikeshub/SailfishLCD

// Uses the code directly from Sailfish

//

//#define FF_INTERFACEBOARD

//=============================================================================

//======================= LCD / Controller Selection =======================

//========================= (Graphical LCDs) ========================

//=============================================================================

//

// CONTROLLER TYPE: Graphical 128x64 (DOGM)

//

// IMPORTANT: The U8glib library is required for Graphical Display!

// https://github.com/olikraus/U8glib_Arduino

//

//

// RepRapDiscount FULL GRAPHIC Smart Controller

// http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller

//

//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER

//

// ReprapWorld Graphical LCD

// https://reprapworld.com/?products_details&products_id/1218

//

//#define REPRAPWORLD_GRAPHICAL_LCD

//

// Activate one of these if you have a Panucatt Devices

// Viki 2.0 or mini Viki with Graphic LCD

// http://panucatt.com

//

//#define VIKI2

//#define miniVIKI

//

// MakerLab Mini Panel with graphic

// controller and SD support - http://reprap.org/wiki/Mini_panel

//

//#define MINIPANEL

//

// MaKr3d Makr-Panel with graphic controller and SD support.

// http://reprap.org/wiki/MaKr3d_MaKrPanel

//

//#define MAKRPANEL

//

// Adafruit ST7565 Full Graphic Controller.

// https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/

//

//#define ELB_FULL_GRAPHIC_CONTROLLER

//

// BQ LCD Smart Controller shipped by

// default with the BQ Hephestos 2 and Witbox 2.

//

//#define BQ_LCD_SMART_CONTROLLER

//

// Cartesio UI

// http://mauk.cc/webshop/cartesio-shop/electronics/user-interface

//

//#define CARTESIO_UI

//

// LCD for Melzi Card with Graphical LCD

//

//#define LCD_FOR_MELZI

//

// Original Ulticontroller from Ultimaker 2 printer with SSD1309 I2C display and encoder

// https://github.com/Ultimaker/Ultimaker2/tree/master/1249_Ulticontroller_Board_(x1)

//

//#define ULTI_CONTROLLER

//

// MKS MINI12864 with graphic controller and SD support

// https://reprap.org/wiki/MKS_MINI_12864

//

//#define MKS_MINI_12864

//

// FYSETC variant of the MINI12864 graphic controller with SD support

// https://wiki.fysetc.com/Mini12864_Panel/

//

//#define FYSETC_MINI_12864_X_X // Type C/D/E/F. No tunable RGB Backlight by default

//#define FYSETC_MINI_12864_1_2 // Type C/D/E/F. Simple RGB Backlight (always on)

//#define FYSETC_MINI_12864_2_0 // Type A/B. Discreet RGB Backlight

//#define FYSETC_MINI_12864_2_1 // Type A/B. Neopixel RGB Backlight

//

// Factory display for Creality CR-10

// https://www.aliexpress.com/item/Universal-LCD-12864-3D-Printer-Display-Screen-With-Encoder-For-CR-10-CR-7-Model/32833148327.html

//

// This is RAMPS-compatible using a single 10-pin connector.

// (For CR-10 owners who want to replace the Melzi Creality board but retain the display)

//

//#define CR10_STOCKDISPLAY

//

// ANET and Tronxy Graphical Controller

//

// Anet 128x64 full graphics lcd with rotary encoder as used on Anet A6

// A clone of the RepRapDiscount full graphics display but with

// different pins/wiring (see pins_ANET_10.h).

//

//#define ANET_FULL_GRAPHICS_LCD

//

// AZSMZ 12864 LCD with SD

// https://www.aliexpress.com/store/product/3D-printer-smart-controller-SMART-RAMPS-OR-RAMPS-1-4-LCD-12864-LCD-control-panel-green/2179173_32213636460.html

//

//#define AZSMZ_12864

//

// Silvergate GLCD controller

// http://github.com/android444/Silvergate

//

//#define SILVER_GATE_GLCD_CONTROLLER

//=============================================================================

//============================== OLED Displays ==============================

//=============================================================================

//

// SSD1306 OLED full graphics generic display

//

//#define U8GLIB_SSD1306

//

// SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules

//

//#define SAV_3DGLCD

#if ENABLED(SAV_3DGLCD)

  #define U8GLIB_SSD1306

  //#define U8GLIB_SH1106

#endif

//

// TinyBoy2 128x64 OLED / Encoder Panel

//

//#define OLED_PANEL_TINYBOY2

//

// MKS OLED 1.3" 128 ? 64 FULL GRAPHICS CONTROLLER

// http://reprap.org/wiki/MKS_12864OLED

//

// Tiny, but very sharp OLED display

//

//#define MKS_12864OLED // Uses the SH1106 controller (default)

//#define MKS_12864OLED_SSD1306 // Uses the SSD1306 controller

//

// Einstart S OLED SSD1306

//

//#define U8GLIB_SH1106_EINSTART

//

// Overlord OLED display/controller with i2c buzzer and LEDs

//

//#define OVERLORD_OLED

//=============================================================================

//========================== Extensible UI Displays ===========================

//=============================================================================

//

// DGUS Touch Display with DWIN OS

//

//#define DGUS_LCD

//

// Touch-screen LCD for Malyan M200 printers

//

//#define MALYAN_LCD

//

// Touch UI for FTDI EVE (FT800/FT810) displays

// See Configuration_adv.h for all configuration options.

//

//#define TOUCH_UI_FTDI_EVE

//

// Third-party or vendor-customized controller interfaces.

// Sources should be installed in 'src/lcd/extensible_ui'.

//

//#define EXTENSIBLE_UI

//=============================================================================

//=============================== Graphical TFTs ==============================

//=============================================================================

//

// FSMC display (MKS Robin, Alfawise U20, JGAurora A5S, REXYZ A1, etc.)

//

//#define FSMC_GRAPHICAL_TFT

//=============================================================================

//============================ Other Controllers ============================

//=============================================================================

//

// ADS7843/XPT2046 ADC Touchscreen such as ILI9341 2.8

//

//#define TOUCH_BUTTONS

#if ENABLED(TOUCH_BUTTONS)

  #define BUTTON_DELAY_EDIT 50 // (ms) Button repeat delay for edit screens

  #define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus

  #define XPT2046_X_CALIBRATION 12316

  #define XPT2046_Y_CALIBRATION -8981

  #define XPT2046_X_OFFSET -43

  #define XPT2046_Y_OFFSET 257

#endif

//

// RepRapWorld REPRAPWORLD_KEYPAD v1.1

// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626

//

//#define REPRAPWORLD_KEYPAD

//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // (mm) Distance to move per key-press

//=============================================================================

//=============================== Extra Features ==============================

//=============================================================================

// @section extras

// Increase the FAN PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino

//#define FAST_PWM_FAN

// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency

// which is not as annoying as with the hardware PWM. On the other hand, if this frequency

// is too low, you should also increment SOFT_PWM_SCALE.

//#define FAN_SOFT_PWM

// Incrementing this by 1 will double the software PWM frequency,

// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.

// However, control resolution will be halved for each increment;

// at zero value, there are 128 effective control positions.

// :[0,1,2,3,4,5,6,7]

#define SOFT_PWM_SCALE 0

// If SOFT_PWM_SCALE is set to a value higher than 0, dithering can

// be used to mitigate the associated resolution loss. If enabled,

// some of the PWM cycles are stretched so on average the desired

// duty cycle is attained.

//#define SOFT_PWM_DITHER

// Temperature status LEDs that display the hotend and bed temperature.

// If all hotends, bed temperature, and target temperature are under 54C

// then the BLUE led is on. Otherwise the RED led is on. (1C hysteresis)

//#define TEMP_STAT_LEDS

// SkeinForge sends the wrong arc g-codes when using Arc Point as fillet procedure

//#define SF_ARC_FIX

// Support for the BariCUDA Paste Extruder

//#define BARICUDA

// Support for BlinkM/CyzRgb

//#define BLINKM

// Support for PCA9632 PWM LED driver

//#define PCA9632

// Support for PCA9533 PWM LED driver

// https://github.com/mikeshub/SailfishRGB_LED

//#define PCA9533

/**

 * RGB LED / LED Strip Control

 *

 * Enable support for an RGB LED connected to 5V digital pins, or

 * an RGB Strip connected to MOSFETs controlled by digital pins.

 *

 * Adds the M150 command to set the LED (or LED strip) color.

 * If pins are PWM capable (e.g., 4, 5, 6, 11) then a range of

 * luminance values can be set from 0 to 255.

 * For Neopixel LED an overall brightness parameter is also available.

 *

 * *** CAUTION ***

 * LED Strips require a MOSFET Chip between PWM lines and LEDs,

 * as the Arduino cannot handle the current the LEDs will require.

 * Failure to follow this precaution can destroy your Arduino!

 * NOTE: A separate 5V power supply is required! The Neopixel LED needs

 * more current than the Arduino 5V linear regulator can produce.

 * *** CAUTION ***

 *

 * LED Type. Enable only one of the following two options.

 *

 */

//#define RGB_LED

//#define RGBW_LED

#if EITHER(RGB_LED, RGBW_LED)

  //#define RGB_LED_R_PIN 34

  //#define RGB_LED_G_PIN 43

  //#define RGB_LED_B_PIN 35

  //#define RGB_LED_W_PIN -1

#endif

// Support for Adafruit Neopixel LED driver

//#define NEOPIXEL_LED

#if ENABLED(NEOPIXEL_LED)

  #define NEOPIXEL_TYPE NEO_GRBW // NEO_GRBW / NEO_GRB - four/three channel driver type (defined in Adafruit_NeoPixel.h)

  #define NEOPIXEL_PIN 4 // LED driving pin

  //#define NEOPIXEL2_TYPE NEOPIXEL_TYPE

  //#define NEOPIXEL2_PIN 5

  #define NEOPIXEL_PIXELS 30 // Number of LEDs in the strip, larger of 2 strips if 2 neopixel strips are used

  #define NEOPIXEL_IS_SEQUENTIAL // Sequential display for temperature change - LED by LED. Disable to change all LEDs at once.

  #define NEOPIXEL_BRIGHTNESS 127 // Initial brightness (0-255)

  //#define NEOPIXEL_STARTUP_TEST // Cycle through colors at startup

  // Use a single Neopixel LED for static (background) lighting

  //#define NEOPIXEL_BKGD_LED_INDEX 0 // Index of the LED to use

  //#define NEOPIXEL_BKGD_COLOR { 255, 255, 255, 0 } // R, G, B, W

#endif

/**

 * Printer Event LEDs

 *

 * During printing, the LEDs will reflect the printer status:

 *

 * - Gradually change from blue to violet as the heated bed gets to target temp

 * - Gradually change from violet to red as the hotend gets to temperature

 * - Change to white to illuminate work surface

 * - Change to green once print has finished

 * - Turn off after the print has finished and the user has pushed a button

 */

#if ANY(BLINKM, RGB_LED, RGBW_LED, PCA9632, PCA9533, NEOPIXEL_LED)

  #define PRINTER_EVENT_LEDS

#endif

/**

 * R/C SERVO support

 * Sponsored by TrinityLabs, Reworked by codexmas

 */

/**

 * Number of servos

 *

 * For some servo-related options NUM_SERVOS will be set automatically.

 * Set this manually if there are extra servos needing manual control.

 * Leave undefined or set to 0 to entirely disable the servo subsystem.

 */

//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command

// (ms) Delay before the next move will start, to give the servo time to reach its target angle.

// 300ms is a good value but you can try less delay.

// If the servo can't reach the requested position, increase it.

#define SERVO_DELAY { 300 }

// Only power servos during movement, otherwise leave off to prevent jitter

//#define DEACTIVATE_SERVOS_AFTER_MOVE

// Allow servo angle to be edited and saved to EEPROM

//#define EDITABLE_SERVO_ANGLES

Ответы на вопросы