Бюджетный WAAM: американские и турецкие инженеры собрали настольный 3D-принтер «по металлу»
Сборная команда ученых Университета штата Калифорния и Эскишехирского университета Османа Гази взялась за святую святых — создание бюджетного 3D-принтера, способного печатать цельнометаллические изделия. Рассказываем что у них получилось.
Прямую 3D-печать металлами (без промежуточных этапов вроде выращивания полимер-металлических заготовок, а затем вытравливания и спекания) можно разделить на два направления, именуемых в российском ГОСТе «синтезом на подложке» (в англоязычной терминологии Powder Bed Fusion или PBF) и «прямым подводом энергии и материала» (Directed Energy Deposition или DED). Синтез на подложке предусматривает спекание или сплавление металлопорошковых композиций в емкостях с помощью лазерных излучателей или электронно-лучевых пушек. В прямом подводе энергии и материала тоже могут использоваться различные источники энергии, например те же лазеры или электронные пучки, а материалами могут служить как напыляемые в зону спекания или сплавления порошки, так и металлическая проволока.
Проект ученых Университета штата Калифорния и Эскишехирского университета Османа Гази — вариант второго направления, называемый Wire Arc Additive Manufacturing или WAAM. Здесь материалом служит проволока, а изделия выращиваются методом дуговой сварки, конкретно в этом случае неплавящимся электродом в защитной инертной атмосфере. WAAM уже используется в промышленности, например в ремонте и даже аддитивном производстве корабельных деталей: в 2017 году нидерландский производственный центр RAMLAB изготовил первый 3D-печатный корабельный винт, получивший сертификат типа (на иллюстрациях выше и ниже).
Разрешение WAAM 3D-принтеров, мягко говоря, невелико и требует обильной постобработки, зато они легко масштабируются и не требуют возни с относительно дорогими, да и зачастую опасными порошками, а заодно выигрывают у традиционных методов в плане производства геометрически сложных изделий с минимумом отходов. Но масштабировать можно как вверх, так и вниз, и герои нашей истории решили создать подобный аппарат не на основе дорогого многоосевого робота-манипулятора промышленного класса, а путем переделки бюджетного настольного FDM 3D-принтера с намерением уложиться в одну тысячу долларов.
За основу ребята взяли опенсорсный «дрыгостол» под названием Bukobot за авторством калифорнийской компании Deezmaker. Аппарат команда собрала самостоятельно, напечатав пластиковые детали на 3D-принтере Stratasys uPrint SE Plus, а источником энергии для головки служит сварочный аппарат под брендом Everlast. Подвижный электрод установлен на одну каретку с механизмом, подающим в зону расплава металлическую проволоку.
Металлография однослойных образцов из Inconel 718
Эксперименты проводились с двумя видами расходных материалов — проволокой из высокоуглеродистой стали AISI 1030 и жаропрочного никель-хромового сплава Inconel 718 диаметром 0,8 мм с использованием вольфрамовых электродов диаметром 2,37 мм и обдувом инертным газом — аргоном. Серия экспериментов включала опыты по 3D-печати на разных скоростях с соответствующей регулировкой темпов подачи материала и силы тока. Для стали эти параметры варьировались в пределах 2,5-3,5 мм/с с темпом подачи 14-18 мм/c при 45-55А, а инконелем пробовали печатать на скоростях 4,88-5,03 мм/c с темпом подачи проволоки 7,69-10,49 мм/c при 40-50А.
Внешний вид и срез тридцатислойного образца из Inconel 718
Предсказуемо, команда столкнулась с массой сложностей, включая сбои в работе механических компонентов, ошибки в машинном коде, перегрев и даже выгорание электрических соединений, а также сбои в работе электроники и шаговых двигателей, вызываемые помехами от сварочного аппарата.
При отработке параметров результаты сильно разнились: при работе с той же сталью даже при силе тока в 50А 3D-печать на высоких скоростях давала серию капель вместо сплошных линий, так что оптимальным вариантом стала комбинация скорости укладки в 3 мм/c с подачей материала на скорости 18 мм/c при силе тока 55А (вариант №8 на иллюстрации выше). На этих настройках удалось получить стенку из двадцати пяти слоев на иллюстрации ниже.
В целом, эксперимент признан успешным, так как доказана сама возможность WAAM 3D-печати металлами на бюджетном, самостоятельно собранном оборудовании общей стоимостью в районе одной тысячи долларов без значимых дефектов, таких как межслойная оксидация или растрескивание. С полным докладом команды можно ознакомиться по этой ссылке.
А у вас есть интересные новости? Поделитесь с нами своими разработками, и мы расскажем о них всему миру! Ждем ваши идеи по адресу news@3Dtoday.ru.
Еще больше интересных статей
Сбер запустил сервис AI-генерации 3D-моделей
Подпишитесь на автора
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Молодой ученый АГАУ создал удобный стол для работы с 3D-принтерами
Подпишитесь на автора
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Ежегодное издание «Голос филамента»
Подпишитесь на автора
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Компания FDplast объявила о выпуске бесплат...
Комментарии и вопросы
Как это вообще вяжется. Ну вот...
Тут главное чтобы расстояние м...
Спасибо! Пока распечатал еще о...
Всем доброго времени суток, кт...
Добрый день! Подскажите,...
Здравствуйте, уважаемые. ...
Всем здравствуйте! После нагре...