В ТПУ предложили новый способ неразрушающего контроля композитов
Ученые Инженерной школы неразрушающего контроля и безопасности Томского политехнического университета разработали новый способ теплового неразрушающего контроля композитов, основанный на принудительном охлаждении в комбинации с основным импульсом нагрева.
Новый метод позволяет повышать достоверность результатов контроля материалов с высоким уровнем тепловых помех, вызываемых шероховатостью поверхностей и неравномерностью коэффициента излучения. На основе полученных результатов ведется разработка портативного дефектоскопа, который можно будет применять для оценки качества композиционных деталей авиакосмической техники, сообщает пресс-служба вуза.
Классическая процедура теплового неразрушающего контроля заключается в кратковременном нагреве поверхности объекта и регистрации температуры на стадии остывания с помощью тепловизора. Тепловой контроль полимерных композитов с шероховатыми поверхностями и неравномерной излучательной способностью сопровождается рядом сложностей. Они связаны с тем, что при нагреве материала, например, оптическим источником его температура будет неравномерно меняться во времени. Отклонения регистрируемых температур — это тепловые помехи, на фоне которых температурный «сигнал» от внутреннего дефекта может быть пропущен.
Ученые Томского политехнического университета предложили новый способ теплового неразрушающего контроля композитов, основанный на последовательном нагреве и охлаждении поверхности материала. Исследователи численно смоделировали различные параметры предлагаемого способа, после чего провели эксперименты с применением метода линейного сканирования. В качестве экспериментальных образцов были использованы многослойная пластина из оргстекла, окрашенная черной матовой краской, что обеспечило низкий уровень поверхностных тепловых помех, а также изделие из углепластика с существенно шероховатой поверхностью. Оба образца имели внутренние скрытые дефекты. В ходе экспериментов осуществлялся нагрев поверхностей галогенной лампой, затем проводились принудительное охлаждение поверхностей, регистрация температурного поля и анализ полученных тепловых изображений.
«Применение принудительного охлаждения контролируемой поверхности в определенный момент времени после нагрева вызывает интересное явление: избыточная температура поверхности образца опускается до начальной температуры, в то время как внутренняя структура еще «отдает» тепло, и скрытые дефекты все еще производят значительные температурные сигналы. При этом величина температурного контраста, представляющего собой отношение температурного сигнала к температуре в бездефектной зоне, существенно увеличивается. В итоге на фоне «подавленных» шумов поверхности температурные отметки дефектов видны лучше», — рассказал старший научный сотрудник Центра промышленной томографии ТПУ Арсений Чулков.
Таким образом, искусственное повышение температурного сигнала над внутренними дефектами повышает вероятность их обнаружения. Кроме того, комбинированная процедура нагрева и принудительного охлаждения, в отличие от классической процедуры теплового контроля, не требует применения высокой термической нагрузки к контролируемому материалу для обеспечения высокого уровня сигналов в дефектных зонах.
На текущем этапе проекта политехники занимаются разработкой прототипа портативного дефектоскопа, реализующего контроль предложенным способом. Оборудование будет пригодно для контроля дефектов в оптически прозрачных и полупрозрачных композитах. Особенность создаваемого устройства в том, что вместо оптического источника для нагрева и охлаждения будет использоваться конвективный источник. Ожидается, что опытный образец будет готов к концу текущего года.
«Излучение в оптическом диапазоне, проходя сквозь прозрачный материал, слабо его нагревает. Для теплового контроля необходимо, чтобы энергия нагрева поглощалась материалом. Воздушная система нагрева и охлаждения позволит решить эту проблему. Также в дефектоскопе планируется реализовать комбинирование сканирующего теплового контроля и классического ультразвукового метода неразрушающего контроля. Это даст возможность идентифицировать дефекты в широком диапазоне глубин», — пояснил Арсений Чулков.
Исследование проведено при грантовой поддержке Российского научного фонда, результаты опубликованы в издании Journal of Nondestructive Evaluation.
А у вас есть интересные новости? Поделитесь с нами своими разработками, и мы расскажем о них всему миру! Ждем ваши идеи по адресу news@3Dtoday.ru.
Еще больше интересных статей
Империя наносит ответный удар (по Саутгемптону)
Подпишитесь на автора
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Росатом вложит в университетские стартапы 800 млн рублей до 2030 года
Подпишитесь на автора
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Hangprinter: 3D-принтер без корпуса и с практически неограниченным рабочим полем
Подпишитесь на автора
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Комментарии и вопросы
Ради эксперимента пробовал что...
А если не затруднит - можно по...
Вы написали, что новый лист по...
В первый день всё было отлично...
Приветствую всех, суть проблем...
Здравствуйте!Я начинающий в да...
Привет всем. Как говорится, ни...