Кремень FMZ Реклама
Kremen FMHM Реклама

Anycubic Kossel Pulley прошил на Marlin 1.1.8 не проходит авто колибровка по Z

onvoid
Идет загрузка
Загрузка
26.08.2018
1820
16
Вопросы и ответы
Anycubic Kossel Pulley прошил на Marlin 1.1.8 вот отсюда: https://www.thingiverse.com/thing:2803527

взял готовые настройки конфигурационного файла от туда же.

настраивал вот по этому: http://3dtoday.ru/blogs/xolodny/preparation-and-marlin-firmware-for-delta-printer/

включенными остались только DELTA_CALIBRATION_MENU и DELTA_AUTO_CALIBRATION

так же включенно DELTA_CALIBRATION_DEFAULT_POINTS 4 (по 4 поинтам).

остальные автоколибровки отключенны

в меню две автокалибровки

1)Auto Calibration

2)Set Delta Heigth

Auto Calibration проходит на половину, проводит около 5 итераций по центру и по кругу, а потом ,я так понимаю включается Set Delta Height , и вот она не проходит. Выглядит это так, проверяет по центру, поднимается до Хоум, и опускается и начинает проверять по краям и на первой точке, на краю, тупо давит концевик в стол, движки гудят пытаясь продавить стол, но на столе стекло.

Такое ощущение что в Set Delta Height что то не довключенно!

Что можно сделать в этом случае?

Где находится сам код который выполняет Set Delta Heigth ?

Можно ли его поправить?

Код Configyration.h

[spoiler] 

/**

* Marlin 3D Printer Firmware

* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]

*

* Based on Sprinter and grbl.

* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm

*

* This program is free software: you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program. If not, see .

*

*/

/**

* Configuration.h

*

* Basic settings such as:

*

* - Type of electronics

* - Type of temperature sensor

* - Printer geometry

* - Endstop configuration

* - LCD controller

* - Extra features

*

* Advanced settings can be found in Configuration_adv.h

*

*/

#ifndef CONFIGURATION_H

#define CONFIGURATION_H

#define CONFIGURATION_H_VERSION 010107

//===========================================================================

//============================= Getting Started =============================

//===========================================================================

/**

* Here are some standard links for getting your machine calibrated:

*

* http://reprap.org/wiki/Calibration

* http://youtu.be/wAL9d7FgInk

* http://calculator.josefprusa.cz

* http://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide

* http://www.thingiverse.com/thing:5573

* https://sites.google.com/site/repraplogphase/calibration-of-your-reprap

* http://www.thingiverse.com/thing:298812

*/

//===========================================================================

//============================= DELTA Printer ===============================

//===========================================================================

// For a Delta printer start with one of the configuration files in the

// example_configurations/delta directory and customize for your machine.

//

//===========================================================================

//============================= SCARA Printer ===============================

//===========================================================================

// For a SCARA printer start with the configuration files in

// example_configurations/SCARA and customize for your machine.

//

// @section info

// User-specified version info of this build to display in [Pronterface, etc] terminal window during

// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this

// build by the user have been successfully uploaded into firmware.

#define STRING_CONFIG_H_AUTHOR '(none, default config)' // Who made the changes.

#define SHOW_BOOTSCREEN

#define STRING_SPLASH_LINE1 SHORT_BUILD_VERSION // will be shown during bootup in line 1

#define STRING_SPLASH_LINE2 WEBSITE_URL // will be shown during bootup in line 2

//

// *** VENDORS PLEASE READ *****************************************************

//

// Marlin now allow you to have a vendor boot image to be displayed on machine

// start. When SHOW_CUSTOM_BOOTSCREEN is defined Marlin will first show your

// custom boot image and then the default Marlin boot image is shown.

//

// We suggest for you to take advantage of this new feature and keep the Marlin

// boot image unmodified. For an example have a look at the bq Hephestos 2

// example configuration folder.

//

//#define SHOW_CUSTOM_BOOTSCREEN

// @section machine

/**

* Select which serial port on the board will be used for communication with the host.

* This allows the connection of wireless adapters (for instance) to non-default port pins.

* Serial port 0 is always used by the Arduino bootloader regardless of this setting.

*

* :[0, 1, 2, 3, 4, 5, 6, 7]

*/

#define SERIAL_PORT 0

/**

* This setting determines the communication speed of the printer.

*

* 250000 works in most cases, but you might try a lower speed if

* you commonly experience drop-outs during host printing.

* You may try up to 1000000 to speed up SD file transfer.

*

* :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000]

*/

#define BAUDRATE 115200

// Enable the Bluetooth serial interface on AT90USB devices

//#define BLUETOOTH

// The following define selects which electronics board you have.

// Please choose the name from boards.h that matches your setup

#ifndef MOTHERBOARD

#define MOTHERBOARD BOARD_RAMPS_14_EFB

#endif

// Optional custom name for your RepStrap or other custom machine

// Displayed in the LCD 'Ready' message

#define CUSTOM_MACHINE_NAME 'Mini Kossel'

// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)

// You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4)

//#define MACHINE_UUID '00000000-0000-0000-0000-000000000000'

// @section extruder

// This defines the number of extruders

// :[1, 2, 3, 4, 5]

#define EXTRUDERS 1

// Generally expected filament diameter (1.75, 2.85, 3.0, ...). Used for Volumetric, Filament Width Sensor, etc.

#define DEFAULT_NOMINAL_FILAMENT_DIA 1.75

// For Cyclops or any 'multi-extruder' that shares a single nozzle.

//#define SINGLENOZZLE

/**

* Průša MK2 Single Nozzle Multi-Material Multiplexer, and variants.

*

* This device allows one stepper driver on a control board to drive

* two to eight stepper motors, one at a time, in a manner suitable

* for extruders.

*

* This option only allows the multiplexer to switch on tool-change.

* Additional options to configure custom E moves are pending.

*/

//#define MK2_MULTIPLEXER

#if ENABLED(MK2_MULTIPLEXER)

// Override the default DIO selector pins here, if needed.

// Some pins files may provide defaults for these pins.

//#define E_MUX0_PIN 40 // Always Required

//#define E_MUX1_PIN 42 // Needed for 3 to 8 steppers

//#define E_MUX2_PIN 44 // Needed for 5 to 8 steppers

#endif

// A dual extruder that uses a single stepper motor

//#define SWITCHING_EXTRUDER

#if ENABLED(SWITCHING_EXTRUDER)

#define SWITCHING_EXTRUDER_SERVO_NR 0

#define SWITCHING_EXTRUDER_SERVO_ANGLES { 0, 90 } // Angles for E0, E1[, E2, E3]

#if EXTRUDERS > 3

#define SWITCHING_EXTRUDER_E23_SERVO_NR 1

#endif

#endif

// A dual-nozzle that uses a servomotor to raise/lower one of the nozzles

//#define SWITCHING_NOZZLE

#if ENABLED(SWITCHING_NOZZLE)

#define SWITCHING_NOZZLE_SERVO_NR 0

#define SWITCHING_NOZZLE_SERVO_ANGLES { 0, 90 } // Angles for E0, E1

//#define HOTEND_OFFSET_Z { 0.0, 0.0 }

#endif

/**

* Two separate X-carriages with extruders that connect to a moving part

* via a magnetic docking mechanism. Requires SOL1_PIN and SOL2_PIN.

*/

//#define PARKING_EXTRUDER

#if ENABLED(PARKING_EXTRUDER)

#define PARKING_EXTRUDER_SOLENOIDS_INVERT // If enabled, the solenoid is NOT magnetized with applied voltage

#define PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE LOW // LOW or HIGH pin signal energizes the coil

#define PARKING_EXTRUDER_SOLENOIDS_DELAY 250 // Delay (ms) for magnetic field. No delay if 0 or not defined.

#define PARKING_EXTRUDER_PARKING_X { -78, 184 } // X positions for parking the extruders

#define PARKING_EXTRUDER_GRAB_DISTANCE 1 // mm to move beyond the parking point to grab the extruder

#define PARKING_EXTRUDER_SECURITY_RAISE 5 // Z-raise before parking

#define HOTEND_OFFSET_Z { 0.0, 1.3 } // Z-offsets of the two hotends. The first must be 0.

#endif

/**

* 'Mixing Extruder'

* - Adds a new code, M165, to set the current mix factors.

* - Extends the stepping routines to move multiple steppers in proportion to the mix.

* - Optional support for Repetier Firmware M163, M164, and virtual extruder.

* - This implementation supports only a single extruder.

* - Enable DIRECT_MIXING_IN_G1 for Pia Taubert's reference implementation

*/

//#define MIXING_EXTRUDER

#if ENABLED(MIXING_EXTRUDER)

#define MIXING_STEPPERS 2 // Number of steppers in your mixing extruder

#define MIXING_VIRTUAL_TOOLS 16 // Use the Virtual Tool method with M163 and M164

//#define DIRECT_MIXING_IN_G1 // Allow ABCDHI mix factors in G1 movement commands

#endif

// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).

// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).

// For the other hotends it is their distance from the extruder 0 hotend.

//#define HOTEND_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis

//#define HOTEND_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis

// @section machine

/**

* Select your power supply here. Use 0 if you haven't connected the PS_ON_PIN

*

* 0 = No Power Switch

* 1 = ATX

* 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)

*

* :{ 0:'No power switch', 1:'ATX', 2:'X-Box 360' }

*/

#define POWER_SUPPLY 1

#if POWER_SUPPLY > 0

// Enable this option to leave the PSU off at startup.

// Power to steppers and heaters will need to be turned on with M80.

//#define PS_DEFAULT_OFF

#endif

// @section temperature

//===========================================================================

//============================= Thermal Settings ============================

//===========================================================================

/**

* --NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table

*

* Temperature sensors available:

*

* -3 : thermocouple with MAX31855 (only for sensor 0)

* -2 : thermocouple with MAX6675 (only for sensor 0)

* -1 : thermocouple with AD595

* 0 : not used

* 1 : 100k thermistor - best choice for EPCOS 100k (4.7k pullup)

* 2 : 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)

* 3 : Mendel-parts thermistor (4.7k pullup)

* 4 : 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!

* 5 : 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)

* 6 : 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)

* 7 : 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)

* 71 : 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)

* 8 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)

* 9 : 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)

* 10 : 100k RS thermistor 198-961 (4.7k pullup)

* 11 : 100k beta 3950 1% thermistor (4.7k pullup)

* 12 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)

* 13 : 100k Hisens 3950 1% up to 300°C for hotend 'Simple ONE ' & 'Hotend 'All In ONE'

* 20 : the PT100 circuit found in the Ultimainboard V2.x

* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950

* 66 : 4.7M High Temperature thermistor from Dyze Design

* 70 : the 100K thermistor found in the bq Hephestos 2

* 75 : 100k Generic Silicon Heat Pad with NTC 100K MGB18-104F39050L32 thermistor

*

* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.

* (but gives greater accuracy and more stable PID)

* 51 : 100k thermistor - EPCOS (1k pullup)

* 52 : 200k thermistor - ATC Semitec 204GT-2 (1k pullup)

* 55 : 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)

*

* 1047 : Pt1000 with 4k7 pullup

* 1010 : Pt1000 with 1k pullup (non standard)

* 147 : Pt100 with 4k7 pullup

* 110 : Pt100 with 1k pullup (non standard)

*

* Use these for Testing or Development purposes. NEVER for production machine.

* 998 : Dummy Table that ALWAYS reads 25°C or the temperature defined below.

* 999 : Dummy Table that ALWAYS reads 100°C or the temperature defined below.

*

* :{ '0': 'Not used', '1':'100k / 4.7k - EPCOS', '2':'200k / 4.7k - ATC Semitec 204GT-2', '3':'Mendel-parts / 4.7k', '4':'10k !! do not use for a hotend. Bad resolution at high temp. !!', '5':'100K / 4.7k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)', '6':'100k / 4.7k EPCOS - Not as accurate as Table 1', '7':'100k / 4.7k Honeywell 135-104LAG-J01', '8':'100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT', '9':'100k / 4.7k GE Sensing AL03006-58.2K-97-G1', '10':'100k / 4.7k RS 198-961', '11':'100k / 4.7k beta 3950 1%', '12':'100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT (calibrated for Makibox hot bed)', '13':'100k Hisens 3950 1% up to 300°C for hotend 'Simple ONE ' & hotend 'All In ONE'', '20':'PT100 (Ultimainboard V2.x)', '51':'100k / 1k - EPCOS', '52':'200k / 1k - ATC Semitec 204GT-2', '55':'100k / 1k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)', '60':'100k Maker's Tool Works Kapton Bed Thermistor beta=3950', '66':'Dyze Design 4.7M High Temperature thermistor', '70':'the 100K thermistor found in the bq Hephestos 2', '71':'100k / 4.7k Honeywell 135-104LAF-J01', '147':'Pt100 / 4.7k', '1047':'Pt1000 / 4.7k', '110':'Pt100 / 1k (non-standard)', '1010':'Pt1000 / 1k (non standard)', '-3':'Thermocouple + MAX31855 (only for sensor 0)', '-2':'Thermocouple + MAX6675 (only for sensor 0)', '-1':'Thermocouple + AD595','998':'Dummy 1', '999':'Dummy 2' }

*/

#define TEMP_SENSOR_0 5

#define TEMP_SENSOR_1 0

#define TEMP_SENSOR_2 0

#define TEMP_SENSOR_3 0

#define TEMP_SENSOR_4 0

#define TEMP_SENSOR_BED 5

// Dummy thermistor constant temperature readings, for use with 998 and 999

#define DUMMY_THERMISTOR_998_VALUE 25

#define DUMMY_THERMISTOR_999_VALUE 100

// Use temp sensor 1 as a redundant sensor with sensor 0. If the readings

// from the two sensors differ too much the print will be aborted.

//#define TEMP_SENSOR_1_AS_REDUNDANT

#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 5

// Extruder temperature must be close to target for this long before M109 returns success

#define TEMP_RESIDENCY_TIME 10 // (seconds)

#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered 'close' to the target one

#define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.

// Bed temperature must be close to target for this long before M190 returns success

#define TEMP_BED_RESIDENCY_TIME 0 // (seconds)

#define TEMP_BED_HYSTERESIS 3 // (degC) range of +/- temperatures considered 'close' to the target one

#define TEMP_BED_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.

// The minimal temperature defines the temperature below which the heater will not be enabled It is used

// to check that the wiring to the thermistor is not broken.

// Otherwise this would lead to the heater being powered on all the time.

#define HEATER_0_MINTEMP 5

#define HEATER_1_MINTEMP 5

#define HEATER_2_MINTEMP 5

#define HEATER_3_MINTEMP 5

#define HEATER_4_MINTEMP 5

#define BED_MINTEMP 5

// When temperature exceeds max temp, your heater will be switched off.

// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!

// You should use MINTEMP for thermistor short/failure protection.

#define HEATER_0_MAXTEMP 275

#define HEATER_1_MAXTEMP 275

#define HEATER_2_MAXTEMP 275

#define HEATER_3_MAXTEMP 275

#define HEATER_4_MAXTEMP 275

#define BED_MAXTEMP 150

//===========================================================================

//============================= PID Settings ================================

//===========================================================================

// PID Tuning Guide here: http://reprap.org/wiki/PID_Tuning

// Comment the following line to disable PID and enable bang-bang.

#define PIDTEMP

#define BANG_MAX 255 // Limits current to nozzle while in bang-bang mode; 255=full current

#define PID_MAX BANG_MAX // Limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current

#define PID_K1 0.95 // Smoothing factor within the PID

#if ENABLED(PIDTEMP)

//#define PID_AUTOTUNE_MENU // Add PID Autotune to the LCD 'Temperature' menu to run M303 and apply the result.

//#define PID_DEBUG // Sends debug data to the serial port.

//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX

//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay

//#define PID_PARAMS_PER_HOTEND // Uses separate PID parameters for each extruder (useful for mismatched extruders)

// Set/get with gcode: M301 E[extruder number, 0-2]

#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature

// is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.

// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it

// Ultimaker

#define DEFAULT_Kp 22.2

#define DEFAULT_Ki 1.08

#define DEFAULT_Kd 114

// MakerGear

//#define DEFAULT_Kp 7.0

//#define DEFAULT_Ki 0.1

//#define DEFAULT_Kd 12

// Mendel Parts V9 on 12V

//#define DEFAULT_Kp 63.0

//#define DEFAULT_Ki 2.25

//#define DEFAULT_Kd 440

#endif // PIDTEMP

//===========================================================================

//============================= PID > Bed Temperature Control ===============

//===========================================================================

// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis

//

// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.

// If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,

// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.

// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.

// If your configuration is significantly different than this and you don't understand the issues involved, you probably

// shouldn't use bed PID until someone else verifies your hardware works.

// If this is enabled, find your own PID constants below.

//#define PIDTEMPBED

//#define BED_LIMIT_SWITCHING

// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.

// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)

// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,

// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)

#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current

#if ENABLED(PIDTEMPBED)

//#define PID_BED_DEBUG // Sends debug data to the serial port.

//120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)

//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)

#define DEFAULT_bedKp 10.00

#define DEFAULT_bedKi .023

#define DEFAULT_bedKd 305.4

//120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)

//from pidautotune

//#define DEFAULT_bedKp 97.1

//#define DEFAULT_bedKi 1.41

//#define DEFAULT_bedKd 1675.16

// FIND YOUR OWN: 'M303 E-1 C8 S90' to run autotune on the bed at 90 degreesC for 8 cycles.

#endif // PIDTEMPBED

// @section extruder

// This option prevents extrusion if the temperature is below EXTRUDE_MINTEMP.

// It also enables the M302 command to set the minimum extrusion temperature

// or to allow moving the extruder regardless of the hotend temperature.

// *** IT IS HIGHLY RECOMMENDED TO LEAVE THIS OPTION ENABLED! ***

#define PREVENT_COLD_EXTRUSION

#define EXTRUDE_MINTEMP 170

// This option prevents a single extrusion longer than EXTRUDE_MAXLENGTH.

// Note that for Bowden Extruders a too-small value here may prevent loading.

#define PREVENT_LENGTHY_EXTRUDE

#define EXTRUDE_MAXLENGTH 200

//===========================================================================

//======================== Thermal Runaway Protection =======================

//===========================================================================

/**

* Thermal Protection provides additional protection to your printer from damage

* and fire. Marlin always includes safe min and max temperature ranges which

* protect against a broken or disconnected thermistor wire.

*

* The issue: If a thermistor falls out, it will report the much lower

* temperature of the air in the room, and the the firmware will keep

* the heater on.

*

* If you get 'Thermal Runaway' or 'Heating failed' errors the

* details can be tuned in Configuration_adv.h

*/

#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders

#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed

//===========================================================================

//============================= Mechanical Settings =========================

//===========================================================================

// @section machine

// Uncomment one of these options to enable CoreXY, CoreXZ, or CoreYZ kinematics

// either in the usual order or reversed

//#define COREXY

//#define COREXZ

//#define COREYZ

//#define COREYX

//#define COREZX

//#define COREZY

//===========================================================================

//============================== Delta Settings =============================

//===========================================================================

// Enable DELTA kinematics and most of the default configuration for Deltas

#define DELTA

#if ENABLED(DELTA)

// Make delta curves from many straight lines (linear interpolation).

// This is a trade-off between visible corners (not enough segments)

// and processor overload (too many expensive sqrt calls).

#define DELTA_SEGMENTS_PER_SECOND 200

// After homing move down to a height where XY movement is unconstrained

//#define DELTA_HOME_TO_SAFE_ZONE

// Delta calibration menu

// uncomment to add three points calibration menu option.

// See http://minow.blogspot.com/index.html#4918805519571907051

#define DELTA_CALIBRATION_MENU

// uncomment to add G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)

#define DELTA_AUTO_CALIBRATION

// NOTE NB all values for DELTA_* values MUST be floating point, so always have a decimal point in them

#if ENABLED(DELTA_AUTO_CALIBRATION)

// set the default number of probe points : n*n (1 -> 7)

#define DELTA_CALIBRATION_DEFAULT_POINTS 4

// Enable and set these values based on results of 'G33 A'

//#define H_FACTOR 1.01

//#define R_FACTOR 2.61

//#define A_FACTOR 0.87

#endif

#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)

// Set the radius for the calibration probe points - max 0.9 * DELTA_PRINTABLE_RADIUS for non-eccentric probes

#define DELTA_CALIBRATION_RADIUS 78.0 // mm

// Set the steprate for papertest probing

#define PROBE_MANUALLY_STEP 0.025

#endif

// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).

#define DELTA_PRINTABLE_RADIUS 90.0 // mm

// Center-to-center distance of the holes in the diagonal push rods.

#define DELTA_DIAGONAL_ROD 216.4 // mm

// height from z=0 to home position

#define DELTA_HEIGHT 300.00 // get this value from auto calibrate

#define DELTA_ENDSTOP_ADJ { 0.0, 0.0, 0.0 } // get these from auto calibrate

// Horizontal distance bridged by diagonal push rods when effector is centered.

#define DELTA_RADIUS 98.40 //mm Get this value from auto calibrate

// Trim adjustments for individual towers

// tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0

// measured in degrees anticlockwise looking from above the printer

#define DELTA_TOWER_ANGLE_TRIM { 0.0, 0.0, 0.0 } // get these values from auto calibrate

// delta radius and diaginal rod adjustments measured in mm

//#define DELTA_RADIUS_TRIM_TOWER { 0.0, 0.0, 0.0 }

//#define DELTA_DIAGONAL_ROD_TRIM_TOWER { 0.0, 0.0, 0.0 }

#endif

//===========================================================================

//============================== Endstop Settings ===========================

//===========================================================================

// @section homing

// Specify here all the endstop connectors that are connected to any endstop or probe.

// Almost all printers will be using one per axis. Probes will use one or more of the

// extra connectors. Leave undefined any used for non-endstop and non-probe purposes.

//#define USE_XMIN_PLUG

//#define USE_YMIN_PLUG

#define USE_ZMIN_PLUG // a Z probe

#define USE_XMAX_PLUG

#define USE_YMAX_PLUG

#define USE_ZMAX_PLUG

// coarse Endstop Settings

#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors

#if DISABLED(ENDSTOPPULLUPS)

// fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined

//#define ENDSTOPPULLUP_XMAX

//#define ENDSTOPPULLUP_YMAX

//#define ENDSTOPPULLUP_ZMAX

//#define ENDSTOPPULLUP_XMIN

//#define ENDSTOPPULLUP_YMIN

//#define ENDSTOPPULLUP_ZMIN

//#define ENDSTOPPULLUP_ZMIN_PROBE

#endif

// Mechanical endstop with COM to ground and NC to Signal uses 'false' here (most common setup).

#define X_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define Y_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define Z_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define X_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define Y_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define Z_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define Z_MIN_PROBE_ENDSTOP_INVERTING false // set to true to invert the logic of the probe.

// Enable this feature if all enabled endstop pins are interrupt-capable.

// This will remove the need to poll the interrupt pins, saving many CPU cycles.

//#define ENDSTOP_INTERRUPTS_FEATURE

//=============================================================================

//============================== Movement Settings ============================

//=============================================================================

// @section motion

// delta speeds must be the same on xyz

/**

* Default Settings

*

* These settings can be reset by M502

*

* Note that if EEPROM is enabled, saved values will override these.

*/

/**

* With this option each E stepper can have its own factors for the

* following movement settings. If fewer factors are given than the

* total number of extruders, the last value applies to the rest.

*/

//#define DISTINCT_E_FACTORS

/**

* Default Axis Steps Per Unit (steps/mm)

* Override with M92

* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]

*/

#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 80, 96 } // default steps per unit for Kossel (GT2, 20 tooth)

/**

* Default Max Feed Rate (mm/s)

* Override with M203

* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]

*/

#define DEFAULT_MAX_FEEDRATE { 200, 200, 200, 200 }

/**

* Default Max Acceleration (change/s) change = mm/s

* (Maximum start speed for accelerated moves)

* Override with M201

* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]

*/

#define DEFAULT_MAX_ACCELERATION { 3000, 3000, 3000, 3000 }

/**

* Default Acceleration (change/s) change = mm/s

* Override with M204

*

* M204 P Acceleration

* M204 R Retract Acceleration

* M204 T Travel Acceleration

*/

#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration for printing moves

#define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration for retracts

#define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration for travel (non printing) moves

/**

* Default Jerk (mm/s)

* Override with M205 X Y Z E

*

* 'Jerk' specifies the minimum speed change that requires acceleration.

* When changing speed and direction, if the difference is less than the

* value set here, it may happen instantaneously.

*/

#define DEFAULT_XJERK 10.0

#define DEFAULT_YJERK DEFAULT_XJERK

#define DEFAULT_ZJERK DEFAULT_XJERK // Must be same as XY for delta

#define DEFAULT_EJERK 5.0

//===========================================================================

//============================= Z Probe Options =============================

//===========================================================================

// @section probes

//

// See http://marlinfw.org/docs/configuration/probes.html

//

/**

* Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN

*

* Enable this option for a probe connected to the Z Min endstop pin.

*/

#define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN

/**

* Z_MIN_PROBE_ENDSTOP

*

* Enable this option for a probe connected to any pin except Z-Min.

* (By default Marlin assumes the Z-Max endstop pin.)

* To use a custom Z Probe pin, set Z_MIN_PROBE_PIN below.

*

* - The simplest option is to use a free endstop connector.

* - Use 5V for powered (usually inductive) sensors.

*

* - RAMPS 1.3/1.4 boards may use the 5V, GND, and Aux4->D32 pin:

* - For simple switches connect...

* - normally-closed switches to GND and D32.

* - normally-open switches to 5V and D32.

*

* WARNING: Setting the wrong pin may have unexpected and potentially

* disastrous consequences. Use with caution and do your homework.

*

*/

//#define Z_MIN_PROBE_ENDSTOP

/**

* Probe Type

*

* Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc.

* Activate one of these to use Auto Bed Leveling below.

*/

/**

* The 'Manual Probe' provides a means to do 'Auto' Bed Leveling without a probe.

* Use G29 repeatedly, adjusting the Z height at each point with movement commands

* or (with LCD_BED_LEVELING) the LCD controller.

*/

//#define PROBE_MANUALLY

/**

* A Fix-Mounted Probe either doesn't deploy or needs manual deployment.

* (e.g., an inductive probe or a nozzle-based probe-switch.)

*/

//#define FIX_MOUNTED_PROBE

/**

* Z Servo Probe, such as an endstop switch on a rotating arm.

*/

//#define Z_ENDSTOP_SERVO_NR 0 // Defaults to SERVO 0 connector.

//#define Z_SERVO_ANGLES {70,0} // Z Servo Deploy and Stow angles

/**

* The BLTouch probe uses a Hall effect sensor and emulates a servo.

*/

//#define BLTOUCH

#if ENABLED(BLTOUCH)

//#define BLTOUCH_DELAY 375 // (ms) Enable and increase if needed

#endif

/**

* Enable one or more of the following if probing seems unreliable.

* Heaters and/or fans can be disabled during probing to minimize electrical

* noise. A delay can also be added to allow noise and vibration to settle.

* These options are most useful for the BLTouch probe, but may also improve

* readings with inductive probes and piezo sensors.

*/

//#define PROBING_HEATERS_OFF // Turn heaters off when probing

//#define PROBING_FANS_OFF // Turn fans off when probing

//#define DELAY_BEFORE_PROBING 200 // (ms) To prevent vibrations from triggering piezo sensors

// A probe that is deployed and stowed with a solenoid pin (SOL1_PIN)

//#define SOLENOID_PROBE

// A sled-mounted probe like those designed by Charles Bell.

//#define Z_PROBE_SLED

//#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.

//

// For Z_PROBE_ALLEN_KEY see the Delta example configurations.

//

/**

* Z Probe to nozzle (X,Y) offset, relative to (0, 0).

* X and Y offsets must be integers.

*

* In the following example the X and Y offsets are both positive:

* #define X_PROBE_OFFSET_FROM_EXTRUDER 10

* #define Y_PROBE_OFFSET_FROM_EXTRUDER 10

*

* +-- BACK ---+

* | |

* L | (+) P | R <-- probe (20,20)

* E | | I

* F | (-) N (+) | G <-- nozzle (10,10)

* T | | H

* | (-) | T

* | |

* O-- FRONT --+

* (0,0)

*/

#define X_PROBE_OFFSET_FROM_EXTRUDER 0 // X offset: -left +right [of the nozzle]

#define Y_PROBE_OFFSET_FROM_EXTRUDER 0 // Y offset: -front +behind [the nozzle]

#define Z_PROBE_OFFSET_FROM_EXTRUDER -24.1 // Z offset: -below +above [the nozzle]

// X and Y axis travel speed (mm/m) between probes

#define XY_PROBE_SPEED 2000

// Speed for the first approach when double-probing (MULTIPLE_PROBING == 2)

#define Z_PROBE_SPEED_FAST HOMING_FEEDRATE_Z

// Speed for the 'accurate' probe of each point

#define Z_PROBE_SPEED_SLOW (Z_PROBE_SPEED_FAST / 2)

// The number of probes to perform at each point.

// Set to 2 for a fast/slow probe, using the second probe result.

// Set to 3 or more for slow probes, averaging the results.

//#define MULTIPLE_PROBING 2

/**

* Allen key retractable z-probe as seen on many Kossel delta printers - http://reprap.org/wiki/Kossel#Automatic_bed_leveling_probe

* Deploys by touching z-axis belt. Retracts by pushing the probe down. Uses Z_MIN_PIN.

*/

#define Z_PROBE_ALLEN_KEY

#if ENABLED(Z_PROBE_ALLEN_KEY)

// 2 or 3 sets of coordinates for deploying and retracting the spring loaded touch probe on G29,

// if servo actuated touch probe is not defined. Uncomment as appropriate for your printer/probe.

// Kossel Mini

#define Z_PROBE_ALLEN_KEY_DEPLOY_1_X 30.0

#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y DELTA_PRINTABLE_RADIUS

#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z 100.0

#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE XY_PROBE_SPEED

#define Z_PROBE_ALLEN_KEY_DEPLOY_2_X 0.0

#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y DELTA_PRINTABLE_RADIUS

#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z 100.0

#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE (XY_PROBE_SPEED/10)

#define Z_PROBE_ALLEN_KEY_DEPLOY_3_X Z_PROBE_ALLEN_KEY_DEPLOY_2_X * 0.75

#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y Z_PROBE_ALLEN_KEY_DEPLOY_2_Y * 0.75

#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z Z_PROBE_ALLEN_KEY_DEPLOY_2_Z

#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE XY_PROBE_SPEED

#define Z_PROBE_ALLEN_KEY_STOW_DEPTH 20

// Move the probe into position

#define Z_PROBE_ALLEN_KEY_STOW_1_X -64.0

#define Z_PROBE_ALLEN_KEY_STOW_1_Y 56.0

#define Z_PROBE_ALLEN_KEY_STOW_1_Z 23.0

#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE XY_PROBE_SPEED

// Move the nozzle down further to push the probe into retracted position.

#define Z_PROBE_ALLEN_KEY_STOW_2_X Z_PROBE_ALLEN_KEY_STOW_1_X

#define Z_PROBE_ALLEN_KEY_STOW_2_Y Z_PROBE_ALLEN_KEY_STOW_1_Y

#define Z_PROBE_ALLEN_KEY_STOW_2_Z (Z_PROBE_ALLEN_KEY_STOW_1_Z-Z_PROBE_ALLEN_KEY_STOW_DEPTH)

#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE (XY_PROBE_SPEED/10)

// Raise things back up slightly so we don't bump into anything

#define Z_PROBE_ALLEN_KEY_STOW_3_X Z_PROBE_ALLEN_KEY_STOW_2_X

#define Z_PROBE_ALLEN_KEY_STOW_3_Y Z_PROBE_ALLEN_KEY_STOW_2_Y

#define Z_PROBE_ALLEN_KEY_STOW_3_Z (Z_PROBE_ALLEN_KEY_STOW_1_Z+Z_PROBE_ALLEN_KEY_STOW_DEPTH)

#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE (XY_PROBE_SPEED/2)

#define Z_PROBE_ALLEN_KEY_STOW_4_X 0.0

#define Z_PROBE_ALLEN_KEY_STOW_4_Y 0.0

#define Z_PROBE_ALLEN_KEY_STOW_4_Z Z_PROBE_ALLEN_KEY_STOW_3_Z

#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE XY_PROBE_SPEED

#endif // Z_PROBE_ALLEN_KEY

/**

* Z probes require clearance when deploying, stowing, and moving between

* probe points to avoid hitting the bed and other hardware.

* Servo-mounted probes require extra space for the arm to rotate.

* Inductive probes need space to keep from triggering early.

*

* Use these settings to specify the distance (mm) to raise the probe (or

* lower the bed). The values set here apply over and above any (negative)

* probe Z Offset set with Z_PROBE_OFFSET_FROM_EXTRUDER, M851, or the LCD.

* Only integer values >= 1 are valid here.

*

* Example: `M851 Z-5` with a CLEARANCE of 4 => 9mm from bed to nozzle.

* But: `M851 Z+1` with a CLEARANCE of 2 => 2mm from bed to nozzle.

*/

#define Z_CLEARANCE_DEPLOY_PROBE 50 // Z Clearance for Deploy/Stow

#define Z_CLEARANCE_BETWEEN_PROBES 5 // Z Clearance between probe points

// For M851 give a range for adjusting the Z probe offset

#define Z_PROBE_OFFSET_RANGE_MIN -20

#define Z_PROBE_OFFSET_RANGE_MAX 20

// Enable the M48 repeatability test to test probe accuracy

//#define Z_MIN_PROBE_REPEATABILITY_TEST

// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1

// :{ 0:'Low', 1:'High' }

#define X_ENABLE_ON 0

#define Y_ENABLE_ON 0

#define Z_ENABLE_ON 0

#define E_ENABLE_ON 0 // For all extruders

// Disables axis stepper immediately when it's not being used.

// WARNING: When motors turn off there is a chance of losing position accuracy!

#define DISABLE_X false

#define DISABLE_Y false

#define DISABLE_Z false

// Warn on display about possibly reduced accuracy

//#define DISABLE_REDUCED_ACCURACY_WARNING

// @section extruder

#define DISABLE_E false // For all extruders

#define DISABLE_INACTIVE_EXTRUDER true // Keep only the active extruder enabled.

// @section machine

// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.

#define INVERT_X_DIR true // DELTA does not invert

#define INVERT_Y_DIR true

#define INVERT_Z_DIR true

// Enable this option for Toshiba stepper drivers

//#define CONFIG_STEPPERS_TOSHIBA

// @section extruder

// For direct drive extruder v9 set to true, for geared extruder set to false.

#define INVERT_E0_DIR true

#define INVERT_E1_DIR false

#define INVERT_E2_DIR false

#define INVERT_E3_DIR false

#define INVERT_E4_DIR false

// @section homing

//#define NO_MOTION_BEFORE_HOMING // Inhibit movement until all axes have been homed

//#define Z_HOMING_HEIGHT 15 // (in mm) Minimal z height before homing (G28) for Z clearance above the bed, clamps, ...

// Be sure you have this distance over your Z_MAX_POS in case.

// Direction of endstops when homing; 1=MAX, -1=MIN

// :[-1,1]

#define X_HOME_DIR 1 // deltas always home to max

#define Y_HOME_DIR 1

#define Z_HOME_DIR 1

// @section machine

// The size of the print bed

#define X_BED_SIZE ((DELTA_PRINTABLE_RADIUS) * 2)

#define Y_BED_SIZE ((DELTA_PRINTABLE_RADIUS) * 2)

// Travel limits (mm) after homing, corresponding to endstop positions.

#define X_MIN_POS -(DELTA_PRINTABLE_RADIUS)

#define Y_MIN_POS -(DELTA_PRINTABLE_RADIUS)

#define Z_MIN_POS 0

#define X_MAX_POS DELTA_PRINTABLE_RADIUS

#define Y_MAX_POS DELTA_PRINTABLE_RADIUS

#define Z_MAX_POS MANUAL_Z_HOME_POS

/**

* Software Endstops

*

* - Prevent moves outside the set machine bounds.

* - Individual axes can be disabled, if desired.

* - X and Y only apply to Cartesian robots.

* - Use 'M211' to set software endstops on/off or report current state

*/

// Min software endstops curtail movement below minimum coordinate bounds

#define MIN_SOFTWARE_ENDSTOPS

#if ENABLED(MIN_SOFTWARE_ENDSTOPS)

#define MIN_SOFTWARE_ENDSTOP_X

#define MIN_SOFTWARE_ENDSTOP_Y

#define MIN_SOFTWARE_ENDSTOP_Z

#endif

// Max software endstops curtail movement above maximum coordinate bounds

#define MAX_SOFTWARE_ENDSTOPS

#if ENABLED(MAX_SOFTWARE_ENDSTOPS)

#define MAX_SOFTWARE_ENDSTOP_X

#define MAX_SOFTWARE_ENDSTOP_Y

#define MAX_SOFTWARE_ENDSTOP_Z

#endif

/**

* Filament Runout Sensor

* A mechanical or opto endstop is used to check for the presence of filament.

*

* RAMPS-based boards use SERVO3_PIN.

* For other boards you may need to define FIL_RUNOUT_PIN.

* By default the firmware assumes HIGH = has filament, LOW = ran out

*/

//#define FILAMENT_RUNOUT_SENSOR

#if ENABLED(FILAMENT_RUNOUT_SENSOR)

#define FIL_RUNOUT_INVERTING false // set to true to invert the logic of the sensor.

#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.

#define FILAMENT_RUNOUT_SCRIPT 'M600'

#endif

//===========================================================================

//=============================== Bed Leveling ==============================

//===========================================================================

// @section calibrate

/**

* Choose one of the options below to enable G29 Bed Leveling. The parameters

* and behavior of G29 will change depending on your selection.

*

* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!

*

* - AUTO_BED_LEVELING_3POINT

* Probe 3 arbitrary points on the bed (that aren't collinear)

* You specify the XY coordinates of all 3 points.

* The result is a single tilted plane. Best for a flat bed.

*

* - AUTO_BED_LEVELING_LINEAR

* Probe several points in a grid.

* You specify the rectangle and the density of sample points.

* The result is a single tilted plane. Best for a flat bed.

*

* - AUTO_BED_LEVELING_BILINEAR

* Probe several points in a grid.

* You specify the rectangle and the density of sample points.

* The result is a mesh, best for large or uneven beds.

*

* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)

* A comprehensive bed leveling system combining the features and benefits

* of other systems. UBL also includes integrated Mesh Generation, Mesh

* Validation and Mesh Editing systems.

*

* - MESH_BED_LEVELING

* Probe a grid manually

* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)

* For machines without a probe, Mesh Bed Leveling provides a method to perform

* leveling in steps so you can manually adjust the Z height at each grid-point.

* With an LCD controller the process is guided step-by-step.

*/

//#define AUTO_BED_LEVELING_3POINT

//#define AUTO_BED_LEVELING_LINEAR

//#define AUTO_BED_LEVELING_BILINEAR

//#define AUTO_BED_LEVELING_UBL

//#define MESH_BED_LEVELING

/**

* Enable detailed logging of G28, G29, M48, etc.

* Turn on with the command 'M111 S32'.

* NOTE: Requires a lot of PROGMEM!

*/

//#define DEBUG_LEVELING_FEATURE

#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)

// Gradually reduce leveling correction until a set height is reached,

// at which point movement will be level to the machine's XY plane.

// The height can be set with M420 Z

//#define ENABLE_LEVELING_FADE_HEIGHT

// Set the boundaries for probing (where the probe can reach).

#define DELTA_PROBEABLE_RADIUS (DELTA_PRINTABLE_RADIUS - 10)

// For Cartesian machines, instead of dividing moves on mesh boundaries,

// split up moves into short segments like a Delta. This follows the

// contours of the bed more closely than edge-to-edge straight moves.

#define SEGMENT_LEVELED_MOVES

#define LEVELED_SEGMENT_LENGTH 5.0 // (mm) Length of all segments (except the last one)

/**

* Enable the G26 Mesh Validation Pattern tool.

*/

//#define G26_MESH_VALIDATION // Enable G26 mesh validation

#if ENABLED(G26_MESH_VALIDATION)

#define MESH_TEST_NOZZLE_SIZE 0.4 // (mm) Diameter of primary nozzle.

#define MESH_TEST_LAYER_HEIGHT 0.2 // (mm) Default layer height for the G26 Mesh Validation Tool.

#define MESH_TEST_HOTEND_TEMP 205.0 // (°C) Default nozzle temperature for the G26 Mesh Validation Tool.

#define MESH_TEST_BED_TEMP 60.0 // (°C) Default bed temperature for the G26 Mesh Validation Tool.

#endif

#endif

#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)

// Set the number of grid points per dimension.

// Works best with 5 or more points in each dimension.

#define GRID_MAX_POINTS_X 9

#define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

#define LEFT_PROBE_BED_POSITION -(DELTA_PROBEABLE_RADIUS)

#define RIGHT_PROBE_BED_POSITION DELTA_PROBEABLE_RADIUS

#define FRONT_PROBE_BED_POSITION -(DELTA_PROBEABLE_RADIUS)

#define BACK_PROBE_BED_POSITION DELTA_PROBEABLE_RADIUS

// The Z probe minimum outer margin (to validate G29 parameters).

#define MIN_PROBE_EDGE 10

// Probe along the Y axis, advancing X after each column

//#define PROBE_Y_FIRST

#if ENABLED(AUTO_BED_LEVELING_BILINEAR)

// Beyond the probed grid, continue the implied tilt?

// Default is to maintain the height of the nearest edge.

//#define EXTRAPOLATE_BEYOND_GRID

//

// Experimental Subdivision of the grid by Catmull-Rom method.

// Synthesizes intermediate points to produce a more detailed mesh.

//

//#define ABL_BILINEAR_SUBDIVISION

#if ENABLED(ABL_BILINEAR_SUBDIVISION)

// Number of subdivisions between probe points

#define BILINEAR_SUBDIVISIONS 3

#endif

#endif

#elif ENABLED(AUTO_BED_LEVELING_3POINT)

// 3 arbitrary points to probe.

// A simple cross-product is used to estimate the plane of the bed.

#define ABL_PROBE_PT_1_X 15

#define ABL_PROBE_PT_1_Y 180

#define ABL_PROBE_PT_2_X 15

#define ABL_PROBE_PT_2_Y 20

#define ABL_PROBE_PT_3_X 170

#define ABL_PROBE_PT_3_Y 20

#elif ENABLED(AUTO_BED_LEVELING_UBL)

//===========================================================================

//========================= Unified Bed Leveling ============================

//===========================================================================

//#define MESH_EDIT_GFX_OVERLAY // Display a graphics overlay while editing the mesh

#define MESH_INSET 1 // Mesh inset margin on print area

#define GRID_MAX_POINTS_X 10 // Don't use more than 15 points per axis, implementation limited.

#define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

#define _PX(R,A) (R) * cos(RADIANS(A))

#define _PY(R,A) (R) * sin(RADIANS(A))

#define UBL_PROBE_PT_1_X _PX(DELTA_PROBEABLE_RADIUS, 0) // Probing points for 3-Point leveling of the mesh

#define UBL_PROBE_PT_1_Y _PY(DELTA_PROBEABLE_RADIUS, 0)

#define UBL_PROBE_PT_2_X _PX(DELTA_PROBEABLE_RADIUS, 120)

#define UBL_PROBE_PT_2_Y _PY(DELTA_PROBEABLE_RADIUS, 120)

#define UBL_PROBE_PT_3_X _PX(DELTA_PROBEABLE_RADIUS, 240)

#define UBL_PROBE_PT_3_Y _PY(DELTA_PROBEABLE_RADIUS, 240)

#define UBL_MESH_EDIT_MOVES_Z // Sophisticated users prefer no movement of nozzle

#define UBL_SAVE_ACTIVE_ON_M500 // Save the currently active mesh in the current slot on M500

#elif ENABLED(MESH_BED_LEVELING)

//===========================================================================

//=================================== Mesh ==================================

//===========================================================================

#define MESH_INSET 10 // Mesh inset margin on print area

#define GRID_MAX_POINTS_X 3 // Don't use more than 7 points per axis, implementation limited.

#define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS

#endif // BED_LEVELING

/**

* Use the LCD controller for bed leveling

* Requires MESH_BED_LEVELING or PROBE_MANUALLY

*/

//#define LCD_BED_LEVELING

#if ENABLED(LCD_BED_LEVELING)

#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.

#define LCD_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment

#endif

// Add a menu item to move between bed corners for manual bed adjustment

//#define LEVEL_BED_CORNERS

/**

* Commands to execute at the end of G29 probing.

* Useful to retract or move the Z probe out of the way.

*/

//#define Z_PROBE_END_SCRIPT 'G1 Z10 F12000

G1 X15 Y330

G1 Z0.5

G1 Z10'

// @section homing

// The center of the bed is at (X=0, Y=0)

#define BED_CENTER_AT_0_0

// Manually set the home position. Leave these undefined for automatic settings.

// For DELTA this is the top-center of the Cartesian print volume.

#define MANUAL_X_HOME_POS 0

#define MANUAL_Y_HOME_POS 0

#define MANUAL_Z_HOME_POS DELTA_HEIGHT // Distance between the nozzle to printbed after homing

// Use 'Z Safe Homing' to avoid homing with a Z probe outside the bed area.

//

// With this feature enabled:

//

// - Allow Z homing only after X and Y homing AND stepper drivers still enabled.

// - If stepper drivers time out, it will need X and Y homing again before Z homing.

// - Move the Z probe (or nozzle) to a defined XY point before Z Homing when homing all axes (G28).

// - Prevent Z homing when the Z probe is outside bed area.

//

//#define Z_SAFE_HOMING

#if ENABLED(Z_SAFE_HOMING)

#define Z_SAFE_HOMING_X_POINT ((X_BED_SIZE) / 2) // X point for Z homing when homing all axes (G28).

#define Z_SAFE_HOMING_Y_POINT ((Y_BED_SIZE) / 2) // Y point for Z homing when homing all axes (G28).

#endif

// Delta only homes to Z

#define HOMING_FEEDRATE_Z (200*60)

// @section calibrate

/**

* Bed Skew Compensation

*

* This feature corrects for misalignment in the XYZ axes.

*

* Take the following steps to get the bed skew in the XY plane:

* 1. Print a test square (e.g., https://www.thingiverse.com/thing:2563185)

* 2. For XY_DIAG_AC measure the diagonal A to C

* 3. For XY_DIAG_BD measure the diagonal B to D

* 4. For XY_SIDE_AD measure the edge A to D

*

* Marlin automatically computes skew factors from these measurements.

* Skew factors may also be computed and set manually:

*

* - Compute AB : SQRT(2*AC*AC+2*BD*BD-4*AD*AD)/2

* - XY_SKEW_FACTOR : TAN(PI/2-ACOS((AC*AC-AB*AB-AD*AD)/(2*AB*AD)))

*

* If desired, follow the same procedure for XZ and YZ.

* Use these diagrams for reference:

*

* Y Z Z

* ^ B-------C ^ B-------C ^ B-------C

* | / / | / / | / /

* | / / | / / | / /

* | A-------D | A-------D | A-------D

* +-------------->X +-------------->X +-------------->Y

* XY_SKEW_FACTOR XZ_SKEW_FACTOR YZ_SKEW_FACTOR

*/

//#define SKEW_CORRECTION

//#if ENABLED(SKEW_CORRECTION)

// Input all length measurements here:

//#define XY_DIAG_AC 282.8427124746

// #define XY_DIAG_BD 282.8427124746

// #define XY_SIDE_AD 200

// Or, set the default skew factors directly here

// to override the above measurements:

//#define XY_SKEW_FACTOR 0.0

//#define SKEW_CORRECTION_FOR_Z

// #if ENABLED(SKEW_CORRECTION_FOR_Z)

// #define XZ_DIAG_AC 282.8427124746

// #define XZ_DIAG_BD 282.8427124746

// #define YZ_DIAG_AC 282.8427124746

// #define YZ_DIAG_BD 282.8427124746

// #define YZ_SIDE_AD 200

// #define XZ_SKEW_FACTOR 0.0

// #define YZ_SKEW_FACTOR 0.0

//#endif

// Enable this option for M852 to set skew at runtime

//#define SKEW_CORRECTION_GCODE

//#endif

//=============================================================================

//============================= Additional Features ===========================

//=============================================================================

// @section extras

//

// EEPROM

//

// The microcontroller can store settings in the EEPROM, e.g. max velocity...

// M500 - stores parameters in EEPROM

// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).

// M502 - reverts to the default 'factory settings'. You still need to store them in EEPROM afterwards if you want to.

//

#define EEPROM_SETTINGS // Enable for M500 and M501 commands

//#define DISABLE_M503 // Saves ~2700 bytes of PROGMEM. Disable for release!

#define EEPROM_CHITCHAT // Give feedback on EEPROM commands. Disable to save PROGMEM.

//

// Host Keepalive

//

// When enabled Marlin will send a busy status message to the host

// every couple of seconds when it can't accept commands.

//

#define HOST_KEEPALIVE_FEATURE // Disable this if your host doesn't like keepalive messages

#define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between 'busy' messages. Set with M113.

#define BUSY_WHILE_HEATING // Some hosts require 'busy' messages even during heating

//

// M100 Free Memory Watcher

//

//#define M100_FREE_MEMORY_WATCHER // Add M100 (Free Memory Watcher) to debug memory usage

//

// G20/G21 Inch mode support

//

//#define INCH_MODE_SUPPORT

//

// M149 Set temperature units support

//

//#define TEMPERATURE_UNITS_SUPPORT

// @section temperature

// Preheat Constants

#define PREHEAT_1_TEMP_HOTEND 180

#define PREHEAT_1_TEMP_BED 70

#define PREHEAT_1_FAN_SPEED 255 // Value from 0 to 255

#define PREHEAT_2_TEMP_HOTEND 240

#define PREHEAT_2_TEMP_BED 100

#define PREHEAT_2_FAN_SPEED 255 // Value from 0 to 255

/**

* Nozzle Park

*

* Park the nozzle at the given XYZ position on idle or G27.

*

* The 'P' parameter controls the action applied to the Z axis:

*

* P0 (Default) If Z is below park Z raise the nozzle.

* P1 Raise the nozzle always to Z-park height.

* P2 Raise the nozzle by Z-park amount, limited to Z_MAX_POS.

*/

//#define NOZZLE_PARK_FEATURE

#if ENABLED(NOZZLE_PARK_FEATURE)

// Specify a park position as { X, Y, Z }

#define NOZZLE_PARK_POINT { (X_MIN_POS + 10), (Y_MAX_POS - 10), 20 }

#define NOZZLE_PARK_XY_FEEDRATE 100 // X and Y axes feedrate in mm/s (also used for delta printers Z axis)

#define NOZZLE_PARK_Z_FEEDRATE 5 // Z axis feedrate in mm/s (not used for delta printers)

#endif

/**

* Clean Nozzle Feature -- EXPERIMENTAL

*

* Adds the G12 command to perform a nozzle cleaning process.

*

* Parameters:

* P Pattern

* S Strokes / Repetitions

* T Triangles (P1 only)

*

* Patterns:

* P0 Straight line (default). This process requires a sponge type material

* at a fixed bed location. 'S' specifies strokes (i.e. back-forth motions)

* between the start / end points.

*

* P1 Zig-zag pattern between (X0, Y0) and (X1, Y1), 'T' specifies the

* number of zig-zag triangles to do. 'S' defines the number of strokes.

* Zig-zags are done in whichever is the narrower dimension.

* For example, 'G12 P1 S1 T3' will execute:

*

* --

* | (X0, Y1) | / / / | (X1, Y1)

* | | / / / |

* A | | / / / |

* | | / / / |

* | (X0, Y0) | / / / | (X1, Y0)

* -- +--------------------------------+

* |________|_________|_________|

* T1 T2 T3

*

* P2 Circular pattern with middle at NOZZLE_CLEAN_CIRCLE_MIDDLE.

* 'R' specifies the radius. 'S' specifies the stroke count.

* Before starting, the nozzle moves to NOZZLE_CLEAN_START_POINT.

*

* Caveats: The ending Z should be the same as starting Z.

* Attention: EXPERIMENTAL. G-code arguments may change.

*

*/

//#define NOZZLE_CLEAN_FEATURE

#if ENABLED(NOZZLE_CLEAN_FEATURE)

// Default number of pattern repetitions

#define NOZZLE_CLEAN_STROKES 12

// Default number of triangles

#define NOZZLE_CLEAN_TRIANGLES 3

// Specify positions as { X, Y, Z }

#define NOZZLE_CLEAN_START_POINT { 30, 30, (Z_MIN_POS + 1)}

#define NOZZLE_CLEAN_END_POINT {100, 60, (Z_MIN_POS + 1)}

// Circular pattern radius

#define NOZZLE_CLEAN_CIRCLE_RADIUS 6.5

// Circular pattern circle fragments number

#define NOZZLE_CLEAN_CIRCLE_FN 10

// Middle point of circle

#define NOZZLE_CLEAN_CIRCLE_MIDDLE NOZZLE_CLEAN_START_POINT

// Moves the nozzle to the initial position

#define NOZZLE_CLEAN_GOBACK

#endif

/**

* Print Job Timer

*

* Automatically start and stop the print job timer on M104/M109/M190.

*

* M104 (hotend, no wait) - high temp = none, low temp = stop timer

* M109 (hotend, wait) - high temp = start timer, low temp = stop timer

* M190 (bed, wait) - high temp = start timer, low temp = none

*

* The timer can also be controlled with the following commands:

*

* M75 - Start the print job timer

* M76 - Pause the print job timer

* M77 - Stop the print job timer

*/

#define PRINTJOB_TIMER_AUTOSTART

/**

* Print Counter

*

* Track statistical data such as:

*

* - Total print jobs

* - Total successful print jobs

* - Total failed print jobs

* - Total time printing

*

* View the current statistics with M78.

*/

//#define PRINTCOUNTER

//=============================================================================

//============================= LCD and SD support ============================

//=============================================================================

// @section lcd

/**

* LCD LANGUAGE

*

* Select the language to display on the LCD. These languages are available:

*

* en, an, bg, ca, cn, cz, cz_utf8, de, el, el-gr, es, eu, fi, fr, fr_utf8, gl,

* hr, it, kana, kana_utf8, nl, pl, pt, pt_utf8, pt-br, pt-br_utf8, ru, sk_utf8,

* tr, uk, zh_CN, zh_TW, test

*

* :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cn':'Chinese', 'cz':'Czech', 'cz_utf8':'Czech (UTF8)', 'de':'German', 'el':'Greek', 'el-gr':'Greek (Greece)', 'es':'Spanish', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'fr_utf8':'French (UTF8)', 'gl':'Galician', 'hr':'Croatian', 'it':'Italian', 'kana':'Japanese', 'kana_utf8':'Japanese (UTF8)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt-br':'Portuguese (Brazilian)', 'pt-br_utf8':'Portuguese (Brazilian UTF8)', 'pt_utf8':'Portuguese (UTF8)', 'ru':'Russian', 'sk_utf8':'Slovak (UTF8)', 'tr':'Turkish', 'uk':'Ukrainian', 'zh_CN':'Chinese (Simplified)', 'zh_TW':'Chinese (Taiwan)', test':'TEST' }

*/

#define LCD_LANGUAGE en

/**

* LCD Character Set

*

* Note: This option is NOT applicable to Graphical Displays.

*

* All character-based LCDs provide ASCII plus one of these

* language extensions:

*

* - JAPANESE ... the most common

* - WESTERN ... with more accented characters

* - CYRILLIC ... for the Russian language

*

* To determine the language extension installed on your controller:

*

* - Compile and upload with LCD_LANGUAGE set to 'test'

* - Click the controller to view the LCD menu

* - The LCD will display Japanese, Western, or Cyrillic text

*

* See http://marlinfw.org/docs/development/lcd_language.html

*

* :['JAPANESE', 'WESTERN', 'CYRILLIC']

*/

#define DISPLAY_CHARSET_HD44780 JAPANESE

/**

* LCD TYPE

*

* Enable ULTRA_LCD for a 16x2, 16x4, 20x2, or 20x4 character-based LCD.

* Enable DOGLCD for a 128x64 (ST7565R) Full Graphical Display.

* (These options will be enabled automatically for most displays.)

*

* IMPORTANT: The U8glib library is required for Full Graphic Display!

* https://github.com/olikraus/U8glib_Arduino

*/

//#define ULTRA_LCD // Character based

//#define DOGLCD // Full graphics display

/**

* SD CARD

*

* SD Card support is disabled by default. If your controller has an SD slot,

* you must uncomment the following option or it won't work.

*

*/

#define SDSUPPORT

/**

* SD CARD: SPI SPEED

*

* Enable one of the following items for a slower SPI transfer speed.

* This may be required to resolve 'volume init' errors.

*/

//#define SPI_SPEED SPI_HALF_SPEED

//#define SPI_SPEED SPI_QUARTER_SPEED

//#define SPI_SPEED SPI_EIGHTH_SPEED

/**

* SD CARD: ENABLE CRC

*

* Use CRC checks and retries on the SD communication.

*/

//#define SD_CHECK_AND_RETRY

//

// ENCODER SETTINGS

//

// This option overrides the default number of encoder pulses needed to

// produce one step. Should be increased for high-resolution encoders.

//

#define ENCODER_PULSES_PER_STEP 2

//

// Use this option to override the number of step signals required to

// move between next/prev menu items.

//

#define ENCODER_STEPS_PER_MENU_ITEM 5

/**

* Encoder Direction Options

*

* Test your encoder's behavior first with both options disabled.

*

* Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION.

* Reversed Menu Navigation only? Enable REVERSE_MENU_DIRECTION.

* Reversed Value Editing only? Enable BOTH options.

*/

//

// This option reverses the encoder direction everywhere.

//

// Set this option if CLOCKWISE causes values to DECREASE

//

//#define REVERSE_ENCODER_DIRECTION

//

// This option reverses the encoder direction for navigating LCD menus.

//

// If CLOCKWISE normally moves DOWN this makes it go UP.

// If CLOCKWISE normally moves UP this makes it go DOWN.

//

//#define REVERSE_MENU_DIRECTION

//

// Individual Axis Homing

//

// Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu.

//

//#define INDIVIDUAL_AXIS_HOMING_MENU

//

// SPEAKER/BUZZER

//

// If you have a speaker that can produce tones, enable it here.

// By default Marlin assumes you have a buzzer with a fixed frequency.

//

//#define SPEAKER

//

// The duration and frequency for the UI feedback sound.

// Set these to 0 to disable audio feedback in the LCD menus.

//

// Note: Test audio output with the G-Code:

// M300 S P

//

//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2

//#define LCD_FEEDBACK_FREQUENCY_HZ 5000

//

// CONTROLLER TYPE: Standard

//

// Marlin supports a wide variety of controllers.

// Enable one of the following options to specify your controller.

//

//

// ULTIMAKER Controller.

//

//#define ULTIMAKERCONTROLLER

//

// ULTIPANEL as seen on Thingiverse.

//

//#define ULTIPANEL

//

// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)

// http://reprap.org/wiki/PanelOne

//

//#define PANEL_ONE

//

// MaKr3d Makr-Panel with graphic controller and SD support.

// http://reprap.org/wiki/MaKr3d_MaKrPanel

//

//#define MAKRPANEL

//

// ReprapWorld Graphical LCD

// https://reprapworld.com/?products_details&products_id/1218

//

//#define REPRAPWORLD_GRAPHICAL_LCD

//

// Activate one of these if you have a Panucatt Devices

// Viki 2.0 or mini Viki with Graphic LCD

// http://panucatt.com

//

//#define VIKI2

//#define miniVIKI

//

// Adafruit ST7565 Full Graphic Controller.

// https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/

//

//#define ELB_FULL_GRAPHIC_CONTROLLER

//

// RepRapDiscount Smart Controller.

// http://reprap.org/wiki/RepRapDiscount_Smart_Controller

//

// Note: Usually sold with a white PCB.

//

#define REPRAP_DISCOUNT_SMART_CONTROLLER

//

// GADGETS3D G3D LCD/SD Controller

// http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel

//

// Note: Usually sold with a blue PCB.

//

//#define G3D_PANEL

//

// RepRapDiscount FULL GRAPHIC Smart Controller

// http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller

//

//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER

//

// MakerLab Mini Panel with graphic

// controller and SD support - http://reprap.org/wiki/Mini_panel

//

//#define MINIPANEL

//

// RepRapWorld REPRAPWORLD_KEYPAD v1.1

// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626

//

// REPRAPWORLD_KEYPAD_MOVE_STEP sets how much should the robot move when a key

// is pressed, a value of 10.0 means 10mm per click.

//

//#define REPRAPWORLD_KEYPAD

//#define REPRAPWORLD_KEYPAD_MOVE_STEP 1.0

//

// RigidBot Panel V1.0

// http://www.inventapart.com/

//

//#define RIGIDBOT_PANEL

//

// BQ LCD Smart Controller shipped by

// default with the BQ Hephestos 2 and Witbox 2.

//

//#define BQ_LCD_SMART_CONTROLLER

//

// Cartesio UI

// http://mauk.cc/webshop/cartesio-shop/electronics/user-interface

//

//#define CARTESIO_UI

//

// ANET and Tronxy Controller supported displays.

//

//#define ZONESTAR_LCD // Requires ADC_KEYPAD_PIN to be assigned to an analog pin.

// This LCD is known to be susceptible to electrical interference

// which scrambles the display. Pressing any button clears it up.

// This is a LCD2004 display with 5 analog buttons.

//#define ANET_FULL_GRAPHICS_LCD // Anet 128x64 full graphics lcd with rotary encoder as used on Anet A6

// A clone of the RepRapDiscount full graphics display but with

// different pins/wiring (see pins_ANET_10.h).

//

// LCD for Melzi Card with Graphical LCD

//

//#define LCD_FOR_MELZI

//

// CONTROLLER TYPE: I2C

//

// Note: These controllers require the installation of Arduino's LiquidCrystal_I2C

// library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C

//

//

// Elefu RA Board Control Panel

// http://www.elefu.com/index.php?route=product/product&product_id=53

//

//#define RA_CONTROL_PANEL

//

// Sainsmart YW Robot (LCM1602) LCD Display

//

// Note: This controller requires F.Malpartida's LiquidCrystal_I2C library

// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home

//

//#define LCD_I2C_SAINSMART_YWROBOT

//

// Generic LCM1602 LCD adapter

//

//#define LCM1602

//

// PANELOLU2 LCD with status LEDs,

// separate encoder and click inputs.

//

// Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later.

// For more info: https://github.com/lincomatic/LiquidTWI2

//

// Note: The PANELOLU2 encoder click input can either be directly connected to

// a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).

//

//#define LCD_I2C_PANELOLU2

//

// Panucatt VIKI LCD with status LEDs,

// integrated click & L/R/U/D buttons, separate encoder inputs.

//

//#define LCD_I2C_VIKI

//

// SSD1306 OLED full graphics generic display

//

//#define U8GLIB_SSD1306

//

// SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules

//

//#define SAV_3DGLCD

#if ENABLED(SAV_3DGLCD)

//#define U8GLIB_SSD1306

#define U8GLIB_SH1106

#endif

//

// CONTROLLER TYPE: Shift register panels

//

// 2 wire Non-latching LCD SR from https://goo.gl/aJJ4sH

// LCD configuration: http://reprap.org/wiki/SAV_3D_LCD

//

//#define SAV_3DLCD

//

// TinyBoy2 128x64 OLED / Encoder Panel

//

//#define OLED_PANEL_TINYBOY2

//

// Makeboard 3D Printer Parts 3D Printer Mini Display 1602 Mini Controller

// https://www.aliexpress.com/item/Micromake-Makeboard-3D-Printer-Parts-3D-Printer-Mini-Display-1602-Mini-Controller-Compatible-with-Ramps-1/32765887917.html

//

//#define MAKEBOARD_MINI_2_LINE_DISPLAY_1602

//

// MKS MINI12864 with graphic controller and SD support

// http://reprap.org/wiki/MKS_MINI_12864

//

//#define MKS_MINI_12864

//

// Factory display for Creality CR-10

// https://www.aliexpress.com/item/Universal-LCD-12864-3D-Printer-Display-Screen-With-Encoder-For-CR-10-CR-7-Model/32833148327.html

//

// This is RAMPS-compatible using a single 10-pin connector.

// (For CR-10 owners who want to replace the Melzi Creality board but retain the display)

//

//#define CR10_STOCKDISPLAY

//

// MKS OLED 1.3' 128 × 64 FULL GRAPHICS CONTROLLER

// http://reprap.org/wiki/MKS_12864OLED

//

// Tiny, but very sharp OLED display

//

//#define MKS_12864OLED // Uses the SH1106 controller (default)

//#define MKS_12864OLED_SSD1306 // Uses the SSD1306 controller

// Silvergate GLCD controller

// http://github.com/android444/Silvergate

//

//#define SILVER_GATE_GLCD_CONTROLLER

//=============================================================================

//=============================== Extra Features ==============================

//=============================================================================

// @section extras

// Increase the FAN PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino

//#define FAST_PWM_FAN

// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency

// which is not as annoying as with the hardware PWM. On the other hand, if this frequency

// is too low, you should also increment SOFT_PWM_SCALE.

//#define FAN_SOFT_PWM

// Incrementing this by 1 will double the software PWM frequency,

// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.

// However, control resolution will be halved for each increment;

// at zero value, there are 128 effective control positions.

#define SOFT_PWM_SCALE 0

// If SOFT_PWM_SCALE is set to a value higher than 0, dithering can

// be used to mitigate the associated resolution loss. If enabled,

// some of the PWM cycles are stretched so on average the desired

// duty cycle is attained.

//#define SOFT_PWM_DITHER

// Temperature status LEDs that display the hotend and bed temperature.

// If all hotends, bed temperature, and target temperature are under 54C

// then the BLUE led is on. Otherwise the RED led is on. (1C hysteresis)

//#define TEMP_STAT_LEDS

// M240 Triggers a camera by emulating a Canon RC-1 Remote

// Data from: http://www.doc-diy.net/photo/rc-1_hacked/

//#define PHOTOGRAPH_PIN 23

// SkeinForge sends the wrong arc g-codes when using Arc Point as fillet procedure

//#define SF_ARC_FIX

// Support for the BariCUDA Paste Extruder

//#define BARICUDA

// Support for BlinkM/CyzRgb

//#define BLINKM

// Support for PCA9632 PWM LED driver

//#define PCA9632

/**

* RGB LED / LED Strip Control

*

* Enable support for an RGB LED connected to 5V digital pins, or

* an RGB Strip connected to MOSFETs controlled by digital pins.

*

* Adds the M150 command to set the LED (or LED strip) color.

* If pins are PWM capable (e.g., 4, 5, 6, 11) then a range of

* luminance values can be set from 0 to 255.

* For Neopixel LED an overall brightness parameter is also available.

*

* *** CAUTION ***

* LED Strips require a MOFSET Chip between PWM lines and LEDs,

* as the Arduino cannot handle the current the LEDs will require.

* Failure to follow this precaution can destroy your Arduino!

* NOTE: A separate 5V power supply is required! The Neopixel LED needs

* more current than the Arduino 5V linear regulator can produce.

* *** CAUTION ***

*

* LED Type. Enable only one of the following two options.

*

*/

//#define RGB_LED

//#define RGBW_LED

#if ENABLED(RGB_LED) || ENABLED(RGBW_LED)

#define RGB_LED_R_PIN 34

#define RGB_LED_G_PIN 43

#define RGB_LED_B_PIN 35

#define RGB_LED_W_PIN -1

#endif

// Support for Adafruit Neopixel LED driver

//#define NEOPIXEL_LED

#if ENABLED(NEOPIXEL_LED)

#define NEOPIXEL_TYPE NEO_GRBW // NEO_GRBW / NEO_GRB - four/three channel driver type (defined in Adafruit_NeoPixel.h)

#define NEOPIXEL_PIN 4 // LED driving pin on motherboard 4 => D4 (EXP2-5 on Printrboard) / 30 => PC7 (EXP3-13 on Rumba)

#define NEOPIXEL_PIXELS 30 // Number of LEDs in the strip

#define NEOPIXEL_IS_SEQUENTIAL // Sequential display for temperature change - LED by LED. Disable to change all LEDs at once.

#define NEOPIXEL_BRIGHTNESS 127 // Initial brightness (0-255)

//#define NEOPIXEL_STARTUP_TEST // Cycle through colors at startup

#endif

/**

* Printer Event LEDs

*

* During printing, the LEDs will reflect the printer status:

*

* - Gradually change from blue to violet as the heated bed gets to target temp

* - Gradually change from violet to red as the hotend gets to temperature

* - Change to white to illuminate work surface

* - Change to green once print has finished

* - Turn off after the print has finished and the user has pushed a button

*/

#if ENABLED(BLINKM) || ENABLED(RGB_LED) || ENABLED(RGBW_LED) || ENABLED(PCA9632) || ENABLED(NEOPIXEL_LED)

#define PRINTER_EVENT_LEDS

#endif

/**

* R/C SERVO support

* Sponsored by TrinityLabs, Reworked by codexmas

*/

/**

* Number of servos

*

* For some servo-related options NUM_SERVOS will be set automatically.

* Set this manually if there are extra servos needing manual control.

* Leave undefined or set to 0 to entirely disable the servo subsystem.

*/

//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command

// Delay (in milliseconds) before the next move will start, to give the servo time to reach its target angle.

// 300ms is a good value but you can try less delay.

// If the servo can't reach the requested position, increase it.

#define SERVO_DELAY { 300 }

// Servo deactivation

//

// With this option servos are powered only during movement, then turned off to prevent jitter.

//#define DEACTIVATE_SERVOS_AFTER_MOVE

#endif // CONFIGURATION_H

[/spoiler]
Ответы на вопросы