Металл2024 Реклама
Метобр2024 Реклама

3D touch, Marlin, Delta

Crea
Идет загрузка
Загрузка
03.12.2018
3731
4
Вопросы и ответы
Статья относится к принтерам:
Micromake D1
Установил 3D touch. Залил скетч.Стартовый гкод. BLTouch пробовал активировать и комментировать..

Когда отправляешь на печать- не доходит сантиметров около 10 см до стола и не замеряя поверхность датчиком, начинает печатать..

Команды

M280 P0 S10 - шток выдвигается

M280 P0 S90 - задвигается.

Работают в полном порядке.

Если после G28 отправить G29, то пишет это: READ: ? (L,R,F,B) out of bounds.

Подскажите что я не углядел?))

Стартовый gcode:

-----------------------------------

G28 ; home all axes

G29; auto level

G91; relative ccordinate

G1 Z+2

G90

G92 E0

G1 E3.0000 F3600


-----------------------------------

Configuration:

-----------------------------------

//===========================================================================

//============================== Delta Settings =============================

//===========================================================================

// Enable DELTA kinematics and most of the default configuration for Deltas

#define DELTA

#if ENABLED(DELTA)

// Make delta curves from many straight lines (linear interpolation).

// This is a trade-off between visible corners (not enough segments)

// and processor overload (too many expensive sqrt calls).

#define DELTA_SEGMENTS_PER_SECOND 160

// Convert feedrates to apply to the Effector instead of the Carriages

#define DELTA_FEEDRATE_SCALING

// After homing move down to a height where XY movement is unconstrained

//#define DELTA_HOME_TO_SAFE_ZONE

// Delta calibration menu

// uncomment to add three points calibration menu option.

// See http://minow.blogspot.com/index.html#4918805519571907051

//#define DELTA_CALIBRATION_MENU

// uncomment to add G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)

//#define DELTA_AUTO_CALIBRATION

// NOTE NB all values for DELTA_* values MUST be floating point, so always have a decimal point in them

#if ENABLED(DELTA_AUTO_CALIBRATION)

// set the default number of probe points : n*n (1 -> 7)

#define DELTA_CALIBRATION_DEFAULT_POINTS 4

#endif

#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)

// Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes

#define DELTA_CALIBRATION_RADIUS 70.0 // mm

// Set the steprate for papertest probing

#define PROBE_MANUALLY_STEP 0.05 // mm

#endif

// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).

#define DELTA_PRINTABLE_RADIUS 90.0 // mm

// Center-to-center distance of the holes in the diagonal push rods.

#define DELTA_DIAGONAL_ROD 217.0 // mm

// height from z=0 to home position

#define DELTA_HEIGHT 240.00 // get this value from auto calibrate

#define DELTA_ENDSTOP_ADJ { 0.0, 0.0, 0.0 } // get these from auto calibrate

// Horizontal distance bridged by diagonal push rods when effector is centered.

#define DELTA_RADIUS 110.1 //mm Get this value from auto calibrate

// Trim adjustments for individual towers

// tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0

// measured in degrees anticlockwise looking from above the printer

#define DELTA_TOWER_ANGLE_TRIM { 0.0, 0.0, 0.0 } // get these values from auto calibrate

// delta radius and diaginal rod adjustments measured in mm

//#define DELTA_RADIUS_TRIM_TOWER { 0.0, 0.0, 0.0 }

//#define DELTA_DIAGONAL_ROD_TRIM_TOWER { 0.0, 0.0, 0.0 }

#endif

//===========================================================================

//============================== Endstop Settings ===========================

//===========================================================================

// @section homing

// Specify here all the endstop connectors that are connected to any endstop or probe.

// Almost all printers will be using one per axis. Probes will use one or more of the

// extra connectors. Leave undefined any used for non-endstop and non-probe purposes.

//#define USE_XMIN_PLUG

//#define USE_YMIN_PLUG

#define USE_ZMIN_PLUG // a Z probe

#define USE_XMAX_PLUG

#define USE_YMAX_PLUG

#define USE_ZMAX_PLUG

// Enable pullup for all endstops to prevent a floating state

#define ENDSTOPPULLUPS

#if DISABLED(ENDSTOPPULLUPS)

// Disable ENDSTOPPULLUPS to set pullups individually

#define ENDSTOPPULLUP_XMAX

#define ENDSTOPPULLUP_YMAX

#define ENDSTOPPULLUP_ZMAX

#define ENDSTOPPULLUP_XMIN

#define ENDSTOPPULLUP_YMIN

#define ENDSTOPPULLUP_ZMIN

#define ENDSTOPPULLUP_ZMIN_PROBE

#endif

// Mechanical endstop with COM to ground and NC to Signal uses 'false' here (most common setup).

#define X_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define Y_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define Z_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop.

#define X_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define Y_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define Z_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define Z_MIN_PROBE_ENDSTOP_INVERTING true // set to true to invert the logic of the probe.

/**

* Stepper Drivers

*

* These settings allow Marlin to tune stepper driver timing and enable advanced options for

* stepper drivers that support them. You may also override timing options in Configuration_adv.h.

*

* A4988 is assumed for unspecified drivers.

*

* Options: A4988, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100,

* TMC2130, TMC2130_STANDALONE, TMC2208, TMC2208_STANDALONE,

* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,

* TMC5130, TMC5130_STANDALONE

* :['A4988', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE']

*/

//#define X_DRIVER_TYPE A4988

//#define Y_DRIVER_TYPE A4988

//#define Z_DRIVER_TYPE A4988

//#define X2_DRIVER_TYPE A4988

//#define Y2_DRIVER_TYPE A4988

//#define Z2_DRIVER_TYPE A4988

//#define E0_DRIVER_TYPE A4988

//#define E1_DRIVER_TYPE A4988

//#define E2_DRIVER_TYPE A4988

//#define E3_DRIVER_TYPE A4988

//#define E4_DRIVER_TYPE A4988

// Enable this feature if all enabled endstop pins are interrupt-capable.

// This will remove the need to poll the interrupt pins, saving many CPU cycles.

//#define ENDSTOP_INTERRUPTS_FEATURE

/**

* Endstop Noise Filter

*

* Enable this option if endstops falsely trigger due to noise.

* NOTE: Enabling this feature means adds an error of +/-0.2mm, so homing

* will end up at a slightly different position on each G28. This will also

* reduce accuracy of some bed probes.

* For mechanical switches, the better approach to reduce noise is to install

* a 100 nanofarads ceramic capacitor in parallel with the switch, making it

* essentially noise-proof without sacrificing accuracy.

* This option also increases MCU load when endstops or the probe are enabled.

* So this is not recommended. USE AT YOUR OWN RISK.

* (This feature is not required for common micro-switches mounted on PCBs

* based on the Makerbot design, since they already include the 100nF capacitor.)

*/

//#define ENDSTOP_NOISE_FILTER

//=============================================================================

//============================== Movement Settings ============================

//=============================================================================

// @section motion

#define XYZ_FULL_STEPS_PER_ROTATION 200

#define XYZ_MICROSTEPS 128

#define XYZ_BELT_PITCH 2

#define XYZ_PULLEY_TEETH 20

// delta speeds must be the same on xyz

#define XYZ_STEPS ((XYZ_FULL_STEPS_PER_ROTATION) * (XYZ_MICROSTEPS) / double(XYZ_BELT_PITCH) / double(XYZ_PULLEY_TEETH))

/**

* Default Settings

*

* These settings can be reset by M502

*

* Note that if EEPROM is enabled, saved values will override these.

*/

/**

* With this option each E stepper can have its own factors for the

* following movement settings. If fewer factors are given than the

* total number of extruders, the last value applies to the rest.

*/

//#define DISTINCT_E_FACTORS

/**

* Default Axis Steps Per Unit (steps/mm)

* Override with M92

* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]

*/

// variables to calculate steps

#define XYZ_FULL_STEPS_PER_ROTATION 200

#define XYZ_MICROSTEPS 128

#define XYZ_BELT_PITCH 2

#define XYZ_PULLEY_TEETH 20

// delta speeds must be the same on xyz

#define DEFAULT_XYZ_STEPS_PER_UNIT ((XYZ_FULL_STEPS_PER_ROTATION) * (XYZ_MICROSTEPS) / double(XYZ_BELT_PITCH) / double(XYZ_PULLEY_TEETH))

#define DEFAULT_AXIS_STEPS_PER_UNIT { DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, 184.8 } // default steps per unit for Kossel (GT2, 20 tooth)

/**

* Default Max Feed Rate (mm/s)

* Override with M203

* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]

*/

#define DEFAULT_MAX_FEEDRATE { 60, 60, 60, 70 }

/**

* Default Max Acceleration (change/s) change = mm/s

* (Maximum start speed for accelerated moves)

* Override with M201

* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]

*/

#define DEFAULT_MAX_ACCELERATION { 1000, 1000, 1000, 1000 }

/**

* Default Acceleration (change/s) change = mm/s

* Override with M204

*

* M204 P Acceleration

* M204 R Retract Acceleration

* M204 T Travel Acceleration

*/

#define DEFAULT_ACCELERATION 500 // X, Y, Z and E acceleration for printing moves

#define DEFAULT_RETRACT_ACCELERATION 1000 // E acceleration for retracts

#define DEFAULT_TRAVEL_ACCELERATION 500 // X, Y, Z acceleration for travel (non printing) moves

/**

* Default Jerk (mm/s)

* Override with M205 X Y Z E

*

* 'Jerk' specifies the minimum speed change that requires acceleration.

* When changing speed and direction, if the difference is less than the

* value set here, it may happen instantaneously.

*/

#define DEFAULT_XJERK 20.0

#define DEFAULT_YJERK DEFAULT_XJERK

#define DEFAULT_ZJERK DEFAULT_XJERK // Must be same as XY for delta

#define DEFAULT_EJERK 5.0

/**

* S-Curve Acceleration

*

* This option eliminates vibration during printing by fitting a Bézier

* curve to move acceleration, producing much smoother direction changes.

*

* See https://github.com/synthetos/TinyG/wiki/Jerk-Controlled-Motion-Explained

*/

//#define S_CURVE_ACCELERATION

//===========================================================================

//============================= Z Probe Options =============================

//===========================================================================

// @section probes

//

// See http://marlinfw.org/docs/configuration/probes.html

//

/**

* Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN

*

* Enable this option for a probe connected to the Z Min endstop pin.

*/

#define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN

/**

* Z_MIN_PROBE_ENDSTOP

*

* Enable this option for a probe connected to any pin except Z-Min.

* (By default Marlin assumes the Z-Max endstop pin.)

* To use a custom Z Probe pin, set Z_MIN_PROBE_PIN below.

*

* - The simplest option is to use a free endstop connector.

* - Use 5V for powered (usually inductive) sensors.

*

* - RAMPS 1.3/1.4 boards may use the 5V, GND, and Aux4->D32 pin:

* - For simple switches connect...

* - normally-closed switches to GND and D32.

* - normally-open switches to 5V and D32.

*

* WARNING: Setting the wrong pin may have unexpected and potentially

* disastrous consequences. Use with caution and do your homework.

*

*/

//#define Z_MIN_PROBE_ENDSTOP

/**

* Probe Type

*

* Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc.

* Activate one of these to use Auto Bed Leveling below.

*/

/**

* The 'Manual Probe' provides a means to do 'Auto' Bed Leveling without a probe.

* Use G29 repeatedly, adjusting the Z height at each point with movement commands

* or (with LCD_BED_LEVELING) the LCD controller.

*/

//#define PROBE_MANUALLY

//#define MANUAL_PROBE_START_Z 0.2

/**

* A Fix-Mounted Probe either doesn't deploy or needs manual deployment.

* (e.g., an inductive probe or a nozzle-based probe-switch.)

*/

//#define FIX_MOUNTED_PROBE

/**

* Z Servo Probe, such as an endstop switch on a rotating arm.

*/

#define Z_PROBE_SERVO_NR 0 // Defaults to SERVO 0 connector.

#define Z_SERVO_ANGLES {10,90} // Z Servo Deploy and Stow angles

/**

* The BLTouch probe uses a Hall effect sensor and emulates a servo.

*/

#define BLTOUCH

#if ENABLED(BLTOUCH)

//#define BLTOUCH_DELAY 375 // (ms) Enable and increase if needed

#endif

/**

* Enable one or more of the following if probing seems unreliable.

* Heaters and/or fans can be disabled during probing to minimize electrical

* noise. A delay can also be added to allow noise and vibration to settle.

* These options are most useful for the BLTouch probe, but may also improve

* readings with inductive probes and piezo sensors.

*/

//#define PROBING_HEATERS_OFF // Turn heaters off when probing

#if ENABLED(PROBING_HEATERS_OFF)

//#define WAIT_FOR_BED_HEATER // Wait for bed to heat back up between probes (to improve accuracy)

#endif

//#define PROBING_FANS_OFF // Turn fans off when probing

//#define DELAY_BEFORE_PROBING 200 // (ms) To prevent vibrations from triggering piezo sensors

// A probe that is deployed and stowed with a solenoid pin (SOL1_PIN)

//#define SOLENOID_PROBE

// A sled-mounted probe like those designed by Charles Bell.

//#define Z_PROBE_SLED

//#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.

//

// For Z_PROBE_ALLEN_KEY see the Delta example configurations.

//

/**

* Z Probe to nozzle (X,Y) offset, relative to (0, 0).

* X and Y offsets must be integers.

*

* In the following example the X and Y offsets are both positive:

* #define X_PROBE_OFFSET_FROM_EXTRUDER 10

* #define Y_PROBE_OFFSET_FROM_EXTRUDER 10

*

* +-- BACK ---+

* | |

* L | (+) P | R <-- probe (20,20)

* E | | I

* F | (-) N (+) | G <-- nozzle (10,10)

* T | | H

* | (-) | T

* | |

* O-- FRONT --+

* (0,0)

*/

#define X_PROBE_OFFSET_FROM_EXTRUDER 0 // D1 Pro actual: 0

#define Y_PROBE_OFFSET_FROM_EXTRUDER -30 // D1 Pro actual: -29.78

/**

* Kossel Pro note: The correct value is likely -17.45 but I'd rather err on the side of

not giving someone a head crash. Use something like G29 Z-0.2 to adjust as needed.

*/

#define Z_PROBE_OFFSET_FROM_EXTRUDER 0 // Increase this if the first layer is too thin (remember: it's a negative number so increase means closer to zero).

// Certain types of probes need to stay away from edges

#define MIN_PROBE_EDGE 20

// X and Y axis travel speed (mm/m) between probes

#define XY_PROBE_SPEED 8000

// Feedrate (mm/m) for the first approach when double-probing (MULTIPLE_PROBING == 2)

#define Z_PROBE_SPEED_FAST HOMING_FEEDRATE_Z

// Feedrate (mm/m) for the 'accurate' probe of each point

#define Z_PROBE_SPEED_SLOW (Z_PROBE_SPEED_FAST / 2)

// The number of probes to perform at each point.

// Set to 2 for a fast/slow probe, using the second probe result.

// Set to 3 or more for slow probes, averaging the results.

//#define MULTIPLE_PROBING 2

/**

* Allen key retractable z-probe as seen on many Kossel delta printers - http://reprap.org/wiki/Kossel#Automatic_bed_leveling_probe

* Deploys by touching z-axis belt. Retracts by pushing the probe down. Uses Z_MIN_PIN.

*/

//#define Z_PROBE_ALLEN_KEY

#if ENABLED(Z_PROBE_ALLEN_KEY)

// 2 or 3 sets of coordinates for deploying and retracting the spring loaded touch probe on G29,

// if servo actuated touch probe is not defined. Uncomment as appropriate for your printer/probe.

// Kossel Pro

#define Z_PROBE_ALLEN_KEY_DEPLOY_1_X -105.00 // Move left but not quite so far that we'll bump the belt

#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y 0.00

#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z 100.0

#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE XY_PROBE_SPEED

#define Z_PROBE_ALLEN_KEY_DEPLOY_2_X -110.00 // Move outward to position deploy pin to the left of the arm

#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y -125.00

#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z Z_PROBE_ALLEN_KEY_DEPLOY_1_Z

#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE XY_PROBE_SPEED

#define Z_PROBE_ALLEN_KEY_DEPLOY_3_X Z_PROBE_ALLEN_KEY_DEPLOY_2_X * 0.75

#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y Z_PROBE_ALLEN_KEY_DEPLOY_2_Y * 0.75

#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z Z_PROBE_ALLEN_KEY_DEPLOY_2_Z

#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE XY_PROBE_SPEED

#define Z_PROBE_ALLEN_KEY_DEPLOY_4_X 45.00 // Move right to trigger deploy pin

#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y -125.00

#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z Z_PROBE_ALLEN_KEY_DEPLOY_3_Z

#define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE (XY_PROBE_SPEED)/2

#define Z_PROBE_ALLEN_KEY_STOW_1_X 36.00 // Line up with bed retaining clip

#define Z_PROBE_ALLEN_KEY_STOW_1_Y -125.00

#define Z_PROBE_ALLEN_KEY_STOW_1_Z 75.0

#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE XY_PROBE_SPEED

#define Z_PROBE_ALLEN_KEY_STOW_2_X Z_PROBE_ALLEN_KEY_STOW_1_X // move down to retract probe

#define Z_PROBE_ALLEN_KEY_STOW_2_Y Z_PROBE_ALLEN_KEY_STOW_1_Y

#define Z_PROBE_ALLEN_KEY_STOW_2_Z 0.0

#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE (XY_PROBE_SPEED)/2

#define Z_PROBE_ALLEN_KEY_STOW_3_X 0.0 // return to 0,0,100

#define Z_PROBE_ALLEN_KEY_STOW_3_Y 0.0

#define Z_PROBE_ALLEN_KEY_STOW_3_Z 100.0

#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE XY_PROBE_SPEED

#define Z_PROBE_ALLEN_KEY_STOW_4_X 0.0

#define Z_PROBE_ALLEN_KEY_STOW_4_Y 0.0

#define Z_PROBE_ALLEN_KEY_STOW_4_Z Z_PROBE_ALLEN_KEY_STOW_3_Z

#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE XY_PROBE_SPEED

#endif // Z_PROBE_ALLEN_KEY

/**

* Z probes require clearance when deploying, stowing, and moving between

* probe points to avoid hitting the bed and other hardware.

* Servo-mounted probes require extra space for the arm to rotate.

* Inductive probes need space to keep from triggering early.

*

* Use these settings to specify the distance (mm) to raise the probe (or

* lower the bed). The values set here apply over and above any (negative)

* probe Z Offset set with Z_PROBE_OFFSET_FROM_EXTRUDER, M851, or the LCD.

* Only integer values >= 1 are valid here.

*

* Example: `M851 Z-5` with a CLEARANCE of 4 => 9mm from bed to nozzle.

* But: `M851 Z+1` with a CLEARANCE of 2 => 2mm from bed to nozzle.

*/

#define Z_CLEARANCE_DEPLOY_PROBE 100 // Z Clearance for Deploy/Stow

#define Z_CLEARANCE_BETWEEN_PROBES 5 // Z Clearance between probe points

#define Z_CLEARANCE_MULTI_PROBE 5 // Z Clearance between multiple probes

//#define Z_AFTER_PROBING 5 // Z position after probing is done

#define Z_PROBE_LOW_POINT -2 // Farthest distance below the trigger-point to go before stopping

// For M851 give a range for adjusting the Z probe offset

#define Z_PROBE_OFFSET_RANGE_MIN -15

#define Z_PROBE_OFFSET_RANGE_MAX 5

// Enable the M48 repeatability test to test probe accuracy

//#define Z_MIN_PROBE_REPEATABILITY_TEST

// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1

// :{ 0:'Low', 1:'High' }

#define X_ENABLE_ON 0

#define Y_ENABLE_ON 0

#define Z_ENABLE_ON 0

#define E_ENABLE_ON 0 // For all extruders

// Disables axis stepper immediately when it's not being used.

// WARNING: When motors turn off there is a chance of losing position accuracy!

#define DISABLE_X false

#define DISABLE_Y false

#define DISABLE_Z false

// Warn on display about possibly reduced accuracy

//#define DISABLE_REDUCED_ACCURACY_WARNING

// @section extruder

#define DISABLE_E false // For all extruders

#define DISABLE_INACTIVE_EXTRUDER true // Keep only the active extruder enabled.

// @section machine

// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.

#define INVERT_X_DIR true

#define INVERT_Y_DIR true

#define INVERT_Z_DIR true

// @section extruder

// For direct drive extruder v9 set to true, for geared extruder set to false.

#define INVERT_E0_DIR false

#define INVERT_E1_DIR false

#define INVERT_E2_DIR false

#define INVERT_E3_DIR false

#define INVERT_E4_DIR false

// @section homing

//#define NO_MOTION_BEFORE_HOMING // Inhibit movement until all axes have been homed

//#define UNKNOWN_Z_NO_RAISE // Don't raise Z (lower the bed) if Z is 'unknown.' For beds that fall when Z is powered off.

//#define Z_HOMING_HEIGHT 4 // (in mm) Minimal z height before homing (G28) for Z clearance above the bed, clamps, ...

// Be sure you have this distance over your Z_MAX_POS in case.

// Direction of endstops when homing; 1=MAX, -1=MIN

// :[-1,1]

#define X_HOME_DIR 1 // deltas always home to max

#define Y_HOME_DIR 1

#define Z_HOME_DIR 1

// @section machine

// The size of the print bed

#define X_BED_SIZE ((DELTA_PRINTABLE_RADIUS) * 2)

#define Y_BED_SIZE ((DELTA_PRINTABLE_RADIUS) * 2)

// Travel limits (mm) after homing, corresponding to endstop positions.

#define X_MIN_POS -(DELTA_PRINTABLE_RADIUS)

#define Y_MIN_POS -(DELTA_PRINTABLE_RADIUS)

#define Z_MIN_POS 0

#define X_MAX_POS DELTA_PRINTABLE_RADIUS

#define Y_MAX_POS DELTA_PRINTABLE_RADIUS

#define Z_MAX_POS MANUAL_Z_HOME_POS

/**

* Software Endstops

*

* - Prevent moves outside the set machine bounds.

* - Individual axes can be disabled, if desired.

* - X and Y only apply to Cartesian robots.

* - Use 'M211' to set software endstops on/off or report current state

*/

// Min software endstops constrain movement within minimum coordinate bounds

#define MIN_SOFTWARE_ENDSTOPS

#if ENABLED(MIN_SOFTWARE_ENDSTOPS)

#define MIN_SOFTWARE_ENDSTOP_X

#define MIN_SOFTWARE_ENDSTOP_Y

#define MIN_SOFTWARE_ENDSTOP_Z

#endif

// Max software endstops constrain movement within maximum coordinate bounds

#define MAX_SOFTWARE_ENDSTOPS

#if ENABLED(MAX_SOFTWARE_ENDSTOPS)

#define MAX_SOFTWARE_ENDSTOP_X

#define MAX_SOFTWARE_ENDSTOP_Y

#define MAX_SOFTWARE_ENDSTOP_Z

#endif

#if ENABLED(MIN_SOFTWARE_ENDSTOPS) || ENABLED(MAX_SOFTWARE_ENDSTOPS)

//#define SOFT_ENDSTOPS_MENU_ITEM // Enable/Disable software endstops from the LCD

#endif

/**

* Filament Runout Sensors

* Mechanical or opto endstops are used to check for the presence of filament.

*

* RAMPS-based boards use SERVO3_PIN for the first runout sensor.

* For other boards you may need to define FIL_RUNOUT_PIN, FIL_RUNOUT2_PIN, etc.

* By default the firmware assumes HIGH=FILAMENT PRESENT.

*/

//#define FILAMENT_RUNOUT_SENSOR

#if ENABLED(FILAMENT_RUNOUT_SENSOR)

#define NUM_RUNOUT_SENSORS 1 // Number of sensors, up to one per extruder. Define a FIL_RUNOUT#_PIN for each.

#define FIL_RUNOUT_INVERTING false // set to true to invert the logic of the sensor.

#define FIL_RUNOUT_PULLUP // Use internal pullup for filament runout pins.

#define FILAMENT_RUNOUT_SCRIPT 'M600'

#endif

//===========================================================================

//=============================== Bed Leveling ==============================

//===========================================================================

// @section calibrate

/**

* Choose one of the options below to enable G29 Bed Leveling. The parameters

* and behavior of G29 will change depending on your selection.

*

* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!

*

* - AUTO_BED_LEVELING_3POINT

* Probe 3 arbitrary points on the bed (that aren't collinear)

* You specify the XY coordinates of all 3 points.

* The result is a single tilted plane. Best for a flat bed.

*

* - AUTO_BED_LEVELING_LINEAR

* Probe several points in a grid.

* You specify the rectangle and the density of sample points.

* The result is a single tilted plane. Best for a flat bed.

*

* - AUTO_BED_LEVELING_BILINEAR

* Probe several points in a grid.

* You specify the rectangle and the density of sample points.

* The result is a mesh, best for large or uneven beds.

*

* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)

* A comprehensive bed leveling system combining the features and benefits

* of other systems. UBL also includes integrated Mesh Generation, Mesh

* Validation and Mesh Editing systems.

*

* - MESH_BED_LEVELING

* Probe a grid manually

* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)

* For machines without a probe, Mesh Bed Leveling provides a method to perform

* leveling in steps so you can manually adjust the Z height at each grid-point.

* With an LCD controller the process is guided step-by-step.

*/

//#define AUTO_BED_LEVELING_3POINT

//#define AUTO_BED_LEVELING_LINEAR

#define AUTO_BED_LEVELING_BILINEAR

//#define AUTO_BED_LEVELING_UBL

//#define MESH_BED_LEVELING

/**

* Normally G28 leaves leveling disabled on completion. Enable

* this option to have G28 restore the prior leveling state.

*/

//#define RESTORE_LEVELING_AFTER_G28

/**

* Enable detailed logging of G28, G29, M48, etc.

* Turn on with the command 'M111 S32'.

* NOTE: Requires a lot of PROGMEM!

*/

//#define DEBUG_LEVELING_FEATURE

#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)

// Gradually reduce leveling correction until a set height is reached,

// at which point movement will be level to the machine's XY plane.

// The height can be set with M420 Z

//#define ENABLE_LEVELING_FADE_HEIGHT

// For Cartesian machines, instead of dividing moves on mesh boundaries,

// split up moves into short segments like a Delta. This follows the

// contours of the bed more closely than edge-to-edge straight moves.

#define SEGMENT_LEVELED_MOVES

#define LEVELED_SEGMENT_LENGTH 5.0 // (mm) Length of all segments (except the last one)

/**

* Enable the G26 Mesh Validation Pattern tool.

*/

//#define G26_MESH_VALIDATION

#if ENABLED(G26_MESH_VALIDATION)

#define MESH_TEST_NOZZLE_SIZE 0.4 // (mm) Diameter of primary nozzle.

#define MESH_TEST_LAYER_HEIGHT 0.2 // (mm) Default layer height for the G26 Mesh Validation Tool.

#define MESH_TEST_HOTEND_TEMP 205.0 // (°C) Default nozzle temperature for the G26 Mesh Validation Tool.

#define MESH_TEST_BED_TEMP 60.0 // (°C) Default bed temperature for the G26 Mesh Validation Tool.

#endif

#endif

#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)

// Set the number of grid points per dimension.

// Works best with 5 or more points in each dimension.

#define GRID_MAX_POINTS_X 7

#define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

// Set the boundaries for probing (where the probe can reach).

//#define LEFT_PROBE_BED_POSITION 46

// #define RIGHT_PROBE_BED_POSITION 121

// #define FRONT_PROBE_BED_POSITION 28

// #define BACK_PROBE_BED_POSITION 134

//или

// Set the boundaries for probing (where the probe can reach).

#define LEFT_PROBE_BED_POSITION -(DELTA_PRINTABLE_RADIUS -(MIN_PROBE_EDGE))

#define RIGHT_PROBE_BED_POSITION DELTA_PRINTABLE_RADIUS -(MIN_PROBE_EDGE)

#define FRONT_PROBE_BED_POSITION -(DELTA_PRINTABLE_RADIUS -(MIN_PROBE_EDGE))

#define BACK_PROBE_BED_POSITION DELTA_PRINTABLE_RADIUS -(MIN_PROBE_EDGE)

// Probe along the Y axis, advancing X after each column

//#define PROBE_Y_FIRST

#if ENABLED(AUTO_BED_LEVELING_BILINEAR)

// Beyond the probed grid, continue the implied tilt?

// Default is to maintain the height of the nearest edge.

//#define EXTRAPOLATE_BEYOND_GRID

//

// Experimental Subdivision of the grid by Catmull-Rom method.

// Synthesizes intermediate points to produce a more detailed mesh.

//

//#define ABL_BILINEAR_SUBDIVISION

#if ENABLED(ABL_BILINEAR_SUBDIVISION)

// Number of subdivisions between probe points

#define BILINEAR_SUBDIVISIONS 3

#endif

#endif

#elif ENABLED(AUTO_BED_LEVELING_UBL)

//===========================================================================

//========================= Unified Bed Leveling ============================

//===========================================================================

//#define MESH_EDIT_GFX_OVERLAY // Display a graphics overlay while editing the mesh

#define MESH_INSET 1 // Set Mesh bounds as an inset region of the bed

#define GRID_MAX_POINTS_X 10 // Don't use more than 15 points per axis, implementation limited.

#define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

#define UBL_MESH_EDIT_MOVES_Z // Sophisticated users prefer no movement of nozzle

#define UBL_SAVE_ACTIVE_ON_M500 // Save the currently active mesh in the current slot on M500

//#define UBL_Z_RAISE_WHEN_OFF_MESH 2.5 // When the nozzle is off the mesh, this value is used

// as the Z-Height correction value.

#elif ENABLED(MESH_BED_LEVELING)

//===========================================================================

//=================================== Mesh ==================================

//===========================================================================

#define MESH_INSET 10 // Set Mesh bounds as an inset region of the bed

#define GRID_MAX_POINTS_X 3 // Don't use more than 7 points per axis, implementation limited.

#define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS

#endif // BED_LEVELING

/**

* Points to probe for all 3-point Leveling procedures.

* Override if the automatically selected points are inadequate.

*/

#if ENABLED(AUTO_BED_LEVELING_3POINT) || ENABLED(AUTO_BED_LEVELING_UBL)

//#define PROBE_PT_1_X 15

//#define PROBE_PT_1_Y 180

//#define PROBE_PT_2_X 15

//#define PROBE_PT_2_Y 20

//#define PROBE_PT_3_X 170

//#define PROBE_PT_3_Y 20

#endif

/**

* Add a bed leveling sub-menu for ABL or MBL.

* Include a guided procedure if manual probing is enabled.

*/

//#define LCD_BED_LEVELING

#if ENABLED(LCD_BED_LEVELING)

#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.

#define LCD_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment

#endif

// Add a menu item to move between bed corners for manual bed adjustment

//#define LEVEL_BED_CORNERS

#if ENABLED(LEVEL_BED_CORNERS)

#define LEVEL_CORNERS_INSET 30 // (mm) An inset for corner leveling

//#define LEVEL_CENTER_TOO // Move to the center after the last corner

#endif

/**

* Commands to execute at the end of G29 probing.

* Useful to retract or move the Z probe out of the way.

*/

//#define Z_PROBE_END_SCRIPT 'G1 Z10 F12000

G1 X15 Y330

G1 Z0.5

G1 Z10'

// @section homing

// The center of the bed is at (X=0, Y=0)

#define BED_CENTER_AT_0_0

// Manually set the home position. Leave these undefined for automatic settings.

// For DELTA this is the top-center of the Cartesian print volume.

//#define MANUAL_X_HOME_POS 0

//#define MANUAL_Y_HOME_POS 0

#define MANUAL_Z_HOME_POS DELTA_HEIGHT // Distance between the nozzle to printbed after homing

// Use 'Z Safe Homing' to avoid homing with a Z probe outside the bed area.

//

// With this feature enabled:

//

// - Allow Z homing only after X and Y homing AND stepper drivers still enabled.

// - If stepper drivers time out, it will need X and Y homing again before Z homing.

// - Move the Z probe (or nozzle) to a defined XY point before Z Homing when homing all axes (G28).

// - Prevent Z homing when the Z probe is outside bed area.

//

#define Z_SAFE_HOMING

#if ENABLED(Z_SAFE_HOMING)

#define Z_SAFE_HOMING_X_POINT ((X_BED_SIZE) / 2) // X point for Z homing when homing all axes (G28).

#define Z_SAFE_HOMING_Y_POINT ((Y_BED_SIZE) / 2) // Y point for Z homing when homing all axes (G28).

#endif

// Delta only homes to Z

#define HOMING_FEEDRATE_Z (200*60)

// @section calibrate

/**

* Bed Skew Compensation

*

* This feature corrects for misalignment in the XYZ axes.

*

* Take the following steps to get the bed skew in the XY plane:

* 1. Print a test square (e.g., https://www.thingiverse.com/thing:2563185)

* 2. For XY_DIAG_AC measure the diagonal A to C

* 3. For XY_DIAG_BD measure the diagonal B to D

* 4. For XY_SIDE_AD measure the edge A to D

*

* Marlin automatically computes skew factors from these measurements.

* Skew factors may also be computed and set manually:

*

* - Compute AB : SQRT(2*AC*AC+2*BD*BD-4*AD*AD)/2

* - XY_SKEW_FACTOR : TAN(PI/2-ACOS((AC*AC-AB*AB-AD*AD)/(2*AB*AD)))

*

* If desired, follow the same procedure for XZ and YZ.

* Use these diagrams for reference:

*

* Y Z Z

* ^ B-------C ^ B-------C ^ B-------C

* | / / | / / | / /

* | / / | / / | / /

* | A-------D | A-------D | A-------D

* +-------------->X +-------------->X +-------------->Y

* XY_SKEW_FACTOR XZ_SKEW_FACTOR YZ_SKEW_FACTOR

*/

//#define SKEW_CORRECTION

#if ENABLED(SKEW_CORRECTION)

// Input all length measurements here:

#define XY_DIAG_AC 282.8427124746

#define XY_DIAG_BD 282.8427124746

#define XY_SIDE_AD 200

// Or, set the default skew factors directly here

// to override the above measurements:

#define XY_SKEW_FACTOR 0.0

//#define SKEW_CORRECTION_FOR_Z

#if ENABLED(SKEW_CORRECTION_FOR_Z)

#define XZ_DIAG_AC 282.8427124746

#define XZ_DIAG_BD 282.8427124746

#define YZ_DIAG_AC 282.8427124746

#define YZ_DIAG_BD 282.8427124746

#define YZ_SIDE_AD 200

#define XZ_SKEW_FACTOR 0.0

#define YZ_SKEW_FACTOR 0.0

#endif

// Enable this option for M852 to set skew at runtime

//#define SKEW_CORRECTION_GCODE

#endif

//=============================================================================

//============================= Additional Features ===========================

//=============================================================================

// @section extras

//

// EEPROM

//

// The microcontroller can store settings in the EEPROM, e.g. max velocity...

// M500 - stores parameters in EEPROM

// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).

// M502 - reverts to the default 'factory settings'. You still need to store them in EEPROM afterwards if you want to.

//

//#define EEPROM_SETTINGS // Enable for M500 and M501 commands

//#define DISABLE_M503 // Saves ~2700 bytes of PROGMEM. Disable for release!

#define EEPROM_CHITCHAT // Give feedback on EEPROM commands. Disable to save PROGMEM.

//

// Host Keepalive

//

// When enabled Marlin will send a busy status message to the host

// every couple of seconds when it can't accept commands.

//

#define HOST_KEEPALIVE_FEATURE // Disable this if your host doesn't like keepalive messages

#define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between 'busy' messages. Set with M113.

#define BUSY_WHILE_HEATING // Some hosts require 'busy' messages even during heating

//

// M100 Free Memory Watcher

//

//#define M100_FREE_MEMORY_WATCHER // Add M100 (Free Memory Watcher) to debug memory usage

//

// G20/G21 Inch mode support

//

//#define INCH_MODE_SUPPORT

//

// M149 Set temperature units support

//

//#define TEMPERATURE_UNITS_SUPPORT

// @section temperature

// Preheat Constants

#define PREHEAT_1_TEMP_HOTEND 180

#define PREHEAT_1_TEMP_BED 70

#define PREHEAT_1_FAN_SPEED 255 // Value from 0 to 255

#define PREHEAT_2_TEMP_HOTEND 240

#define PREHEAT_2_TEMP_BED 100

#define PREHEAT_2_FAN_SPEED 255 // Value from 0 to 255

/**

* Nozzle Park

*

* Park the nozzle at the given XYZ position on idle or G27.

*

* The 'P' parameter controls the action applied to the Z axis:

*

* P0 (Default) If Z is below park Z raise the nozzle.

* P1 Raise the nozzle always to Z-park height.

* P2 Raise the nozzle by Z-park amount, limited to Z_MAX_POS.

*/

//#define NOZZLE_PARK_FEATURE

#if ENABLED(NOZZLE_PARK_FEATURE)

// Specify a park position as { X, Y, Z }

#define NOZZLE_PARK_POINT { (X_MIN_POS + 10), 0, 20 }

#define NOZZLE_PARK_XY_FEEDRATE 100 // X and Y axes feedrate in mm/s (also used for delta printers Z axis)

#define NOZZLE_PARK_Z_FEEDRATE 5 // Z axis feedrate in mm/s (not used for delta printers)

#endif

/**

* Clean Nozzle Feature -- EXPERIMENTAL

*

* Adds the G12 command to perform a nozzle cleaning process.

*

* Parameters:

* P Pattern

* S Strokes / Repetitions

* T Triangles (P1 only)

*

* Patterns:

* P0 Straight line (default). This process requires a sponge type material

* at a fixed bed location. 'S' specifies strokes (i.e. back-forth motions)

* between the start / end points.

*

* P1 Zig-zag pattern between (X0, Y0) and (X1, Y1), 'T' specifies the

* number of zig-zag triangles to do. 'S' defines the number of strokes.

* Zig-zags are done in whichever is the narrower dimension.

* For example, 'G12 P1 S1 T3' will execute:

*

* --

* | (X0, Y1) | / / / | (X1, Y1)

* | | / / / |

* A | | / / / |

* | | / / / |

* | (X0, Y0) | / / / | (X1, Y0)

* -- +--------------------------------+

* |________|_________|_________|

* T1 T2 T3

*

* P2 Circular pattern with middle at NOZZLE_CLEAN_CIRCLE_MIDDLE.

* 'R' specifies the radius. 'S' specifies the stroke count.

* Before starting, the nozzle moves to NOZZLE_CLEAN_START_POINT.

*

* Caveats: The ending Z should be the same as starting Z.

* Attention: EXPERIMENTAL. G-code arguments may change.

*

*/

//#define NOZZLE_CLEAN_FEATURE

#if ENABLED(NOZZLE_CLEAN_FEATURE)

// Default number of pattern repetitions

#define NOZZLE_CLEAN_STROKES 12

// Default number of triangles

#define NOZZLE_CLEAN_TRIANGLES 3

// Specify positions as { X, Y, Z }

#define NOZZLE_CLEAN_START_POINT { 30, 30, (Z_MIN_POS + 1)}

#define NOZZLE_CLEAN_END_POINT {100, 60, (Z_MIN_POS + 1)}

// Circular pattern radius

#define NOZZLE_CLEAN_CIRCLE_RADIUS 6.5

// Circular pattern circle fragments number

#define NOZZLE_CLEAN_CIRCLE_FN 10

// Middle point of circle

#define NOZZLE_CLEAN_CIRCLE_MIDDLE NOZZLE_CLEAN_START_POINT

// Moves the nozzle to the initial position

#define NOZZLE_CLEAN_GOBACK

#endif

/**

* Print Job Timer

*

* Automatically start and stop the print job timer on M104/M109/M190.

*

* M104 (hotend, no wait) - high temp = none, low temp = stop timer

* M109 (hotend, wait) - high temp = start timer, low temp = stop timer

* M190 (bed, wait) - high temp = start timer, low temp = none

*

* The timer can also be controlled with the following commands:

*

* M75 - Start the print job timer

* M76 - Pause the print job timer

* M77 - Stop the print job timer

*/

#define PRINTJOB_TIMER_AUTOSTART

/**

* Print Counter

*

* Track statistical data such as:

*

* - Total print jobs

* - Total successful print jobs

* - Total failed print jobs

* - Total time printing

*

* View the current statistics with M78.

*/

//#define PRINTCOUNTER

//=============================================================================

//============================= LCD and SD support ============================

//=============================================================================

// @section lcd

/**

* LCD LANGUAGE

*

* Select the language to display on the LCD. These languages are available:

*

* en, an, bg, ca, cn, cz, cz_utf8, de, el, el-gr, es, es_utf8,

* eu, fi, fr, fr_utf8, gl, hr, it, kana, kana_utf8, nl, pl, pt,

* pt_utf8, pt-br, pt-br_utf8, ru, sk_utf8, tr, uk, zh_CN, zh_TW, test

*

* :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cn':'Chinese', 'cz':'Czech', 'cz_utf8':'Czech (UTF8)', 'de':'German', 'el':'Greek', 'el-gr':'Greek (Greece)', 'es':'Spanish', 'es_utf8':'Spanish (UTF8)', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'fr_utf8':'French (UTF8)', 'gl':'Galician', 'hr':'Croatian', 'it':'Italian', 'kana':'Japanese', 'kana_utf8':'Japanese (UTF8)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt-br':'Portuguese (Brazilian)', 'pt-br_utf8':'Portuguese (Brazilian UTF8)', 'pt_utf8':'Portuguese (UTF8)', 'ru':'Russian', 'sk_utf8':'Slovak (UTF8)', 'tr':'Turkish', 'uk':'Ukrainian', 'zh_CN':'Chinese (Simplified)', 'zh_TW':'Chinese (Taiwan)', 'test':'TEST' }

*/

#define LCD_LANGUAGE en

/**

* LCD Character Set

*

* Note: This option is NOT applicable to Graphical Displays.

*

* All character-based LCDs provide ASCII plus one of these

* language extensions:

*

* - JAPANESE ... the most common

* - WESTERN ... with more accented characters

* - CYRILLIC ... for the Russian language

*

* To determine the language extension installed on your controller:

*

* - Compile and upload with LCD_LANGUAGE set to 'test'

* - Click the controller to view the LCD menu

* - The LCD will display Japanese, Western, or Cyrillic text

*

* See http://marlinfw.org/docs/development/lcd_language.html

*

* :['JAPANESE', 'WESTERN', 'CYRILLIC']

*/

#define DISPLAY_CHARSET_HD44780 JAPANESE

/**

* SD CARD

*

* SD Card support is disabled by default. If your controller has an SD slot,

* you must uncomment the following option or it won't work.

*

*/

#define SDSUPPORT

/**

* SD CARD: SPI SPEED

*

* Enable one of the following items for a slower SPI transfer speed.

* This may be required to resolve 'volume init' errors.

*/

//#define SPI_SPEED SPI_HALF_SPEED

//#define SPI_SPEED SPI_QUARTER_SPEED

//#define SPI_SPEED SPI_EIGHTH_SPEED

/**

* SD CARD: ENABLE CRC

*

* Use CRC checks and retries on the SD communication.

*/

//#define SD_CHECK_AND_RETRY

/**

* LCD Menu Items

*

* Disable all menus and only display the Status Screen, or

* just remove some extraneous menu items to recover space.

*/

//#define NO_LCD_MENUS

//#define SLIM_LCD_MENUS

//

// ENCODER SETTINGS

//

// This option overrides the default number of encoder pulses needed to

// produce one step. Should be increased for high-resolution encoders.

//

//#define ENCODER_PULSES_PER_STEP 4

//

// Use this option to override the number of step signals required to

// move between next/prev menu items.

//

//#define ENCODER_STEPS_PER_MENU_ITEM 1

/**

* Encoder Direction Options

*

* Test your encoder's behavior first with both options disabled.

*

* Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION.

* Reversed Menu Navigation only? Enable REVERSE_MENU_DIRECTION.

* Reversed Value Editing only? Enable BOTH options.

*/

//

// This option reverses the encoder direction everywhere.

//

// Set this option if CLOCKWISE causes values to DECREASE

//

//#define REVERSE_ENCODER_DIRECTION

//

// This option reverses the encoder direction for navigating LCD menus.

//

// If CLOCKWISE normally moves DOWN this makes it go UP.

// If CLOCKWISE normally moves UP this makes it go DOWN.

//

//#define REVERSE_MENU_DIRECTION

//

// Individual Axis Homing

//

// Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu.

//

//#define INDIVIDUAL_AXIS_HOMING_MENU

//

// SPEAKER/BUZZER

//

// If you have a speaker that can produce tones, enable it here.

// By default Marlin assumes you have a buzzer with a fixed frequency.

//

//#define SPEAKER

//

// The duration and frequency for the UI feedback sound.

// Set these to 0 to disable audio feedback in the LCD menus.

//

// Note: Test audio output with the G-Code:

// M300 S P

//

//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2

//#define LCD_FEEDBACK_FREQUENCY_HZ 5000

//=============================================================================

//======================== LCD / Controller Selection =========================

//======================== (Character-based LCDs) =========================

//=============================================================================

//

// RepRapDiscount Smart Controller.

// http://reprap.org/wiki/RepRapDiscount_Smart_Controller

//

// Note: Usually sold with a white PCB.

//

#define REPRAP_DISCOUNT_SMART_CONTROLLER

//

// ULTIMAKER Controller.

//

//#define ULTIMAKERCONTROLLER

//

// ULTIPANEL as seen on Thingiverse.

//

#define ULTIPANEL

//

// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)

// http://reprap.org/wiki/PanelOne

//

//#define PANEL_ONE

//

// GADGETS3D G3D LCD/SD Controller

// http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel

//

// Note: Usually sold with a blue PCB.

//

//#define G3D_PANEL

//

// RigidBot Panel V1.0

// http://www.inventapart.com/

//

//#define RIGIDBOT_PANEL

//

// Makeboard 3D Printer Parts 3D Printer Mini Display 1602 Mini Controller

// https://www.aliexpress.com/item/Micromake-Makeboard-3D-Printer-Parts-3D-Printer-Mini-Display-1602-Mini-Controller-Compatible-with-Ramps-1/32765887917.html

//

//#define MAKEBOARD_MINI_2_LINE_DISPLAY_1602

//

// ANET and Tronxy 20x4 Controller

//

//#define ZONESTAR_LCD // Requires ADC_KEYPAD_PIN to be assigned to an analog pin.

// This LCD is known to be susceptible to electrical interference

// which scrambles the display. Pressing any button clears it up.

// This is a LCD2004 display with 5 analog buttons.

//

// Generic 16x2, 16x4, 20x2, or 20x4 character-based LCD.

//

#define ULTRA_LCD

//=============================================================================

//======================== LCD / Controller Selection =========================

//===================== (I2C and Shift-Register LCDs) =====================

//=============================================================================

//

// CONTROLLER TYPE: I2C

//

// Note: These controllers require the installation of Arduino's LiquidCrystal_I2C

// library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C

//

//

// Elefu RA Board Control Panel

// http://www.elefu.com/index.php?route=product/product&product_id=53

//

//#define RA_CONTROL_PANEL

//

// Sainsmart (YwRobot) LCD Displays

//

// These require F.Malpartida's LiquidCrystal_I2C library

// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home

//

//#define LCD_SAINSMART_I2C_1602

//#define LCD_SAINSMART_I2C_2004

//

// Generic LCM1602 LCD adapter

//

//#define LCM1602

//

// PANELOLU2 LCD with status LEDs,

// separate encoder and click inputs.

//

// Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later.

// For more info: https://github.com/lincomatic/LiquidTWI2

//

// Note: The PANELOLU2 encoder click input can either be directly connected to

// a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).

//

//#define LCD_I2C_PANELOLU2

//

// Panucatt VIKI LCD with status LEDs,

// integrated click & L/R/U/D buttons, separate encoder inputs.

//

//#define LCD_I2C_VIKI

//

// CONTROLLER TYPE: Shift register panels

//

//

// 2 wire Non-latching LCD SR from https://goo.gl/aJJ4sH

// LCD configuration: http://reprap.org/wiki/SAV_3D_LCD

//

//#define SAV_3DLCD

//=============================================================================

//======================= LCD / Controller Selection =======================

//========================= (Graphical LCDs) ========================

//=============================================================================

//

// CONTROLLER TYPE: Graphical 128x64 (DOGM)

//

// IMPORTANT: The U8glib library is required for Graphical Display!

// https://github.com/olikraus/U8glib_Arduino

//

//

// RepRapDiscount FULL GRAPHIC Smart Controller

// http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller

//

//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER

//

// ReprapWorld Graphical LCD

// https://reprapworld.com/?products_details&products_id/1218

//

//#define REPRAPWORLD_GRAPHICAL_LCD

//

// Activate one of these if you have a Panucatt Devices

// Viki 2.0 or mini Viki with Graphic LCD

// http://panucatt.com

//

//#define VIKI2

//#define miniVIKI

//

// MakerLab Mini Panel with graphic

// controller and SD support - http://reprap.org/wiki/Mini_panel

//

//#define MINIPANEL

//

// MaKr3d Makr-Panel with graphic controller and SD support.

// http://reprap.org/wiki/MaKr3d_MaKrPanel

//

//#define MAKRPANEL

//

// Adafruit ST7565 Full Graphic Controller.

// https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/

//

//#define ELB_FULL_GRAPHIC_CONTROLLER

//

// BQ LCD Smart Controller shipped by

// default with the BQ Hephestos 2 and Witbox 2.

//

//#define BQ_LCD_SMART_CONTROLLER

//

// Cartesio UI

// http://mauk.cc/webshop/cartesio-shop/electronics/user-interface

//

//#define CARTESIO_UI

//

// LCD for Melzi Card with Graphical LCD

//

//#define LCD_FOR_MELZI

//

// SSD1306 OLED full graphics generic display

//

//#define U8GLIB_SSD1306

//

// SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules

//

//#define SAV_3DGLCD

#if ENABLED(SAV_3DGLCD)

//#define U8GLIB_SSD1306

#define U8GLIB_SH1106

#endif

//

// Original Ulticontroller from Ultimaker 2 printer with SSD1309 I2C display and encoder

// https://github.com/Ultimaker/Ultimaker2/tree/master/1249_Ulticontroller_Board_(x1)

//

//#define ULTI_CONTROLLER

//

// TinyBoy2 128x64 OLED / Encoder Panel

//

//#define OLED_PANEL_TINYBOY2

//

// MKS MINI12864 with graphic controller and SD support

// http://reprap.org/wiki/MKS_MINI_12864

//

//#define MKS_MINI_12864

//

// Factory display for Creality CR-10

// https://www.aliexpress.com/item/Universal-LCD-12864-3D-Printer-Display-Screen-With-Encoder-For-CR-10-CR-7-Model/32833148327.html

//

// This is RAMPS-compatible using a single 10-pin connector.

// (For CR-10 owners who want to replace the Melzi Creality board but retain the display)

//

//#define CR10_STOCKDISPLAY

//

// ANET and Tronxy Graphical Controller

//

//#define ANET_FULL_GRAPHICS_LCD // Anet 128x64 full graphics lcd with rotary encoder as used on Anet A6

// A clone of the RepRapDiscount full graphics display but with

// different pins/wiring (see pins_ANET_10.h).

//

// MKS OLED 1.3' 128 × 64 FULL GRAPHICS CONTROLLER

// http://reprap.org/wiki/MKS_12864OLED

//

// Tiny, but very sharp OLED display

//

//#define MKS_12864OLED // Uses the SH1106 controller (default)

//#define MKS_12864OLED_SSD1306 // Uses the SSD1306 controller

//

// Silvergate GLCD controller

// http://github.com/android444/Silvergate

//

//#define SILVER_GATE_GLCD_CONTROLLER

//=============================================================================

//============================ Other Controllers ============================

//=============================================================================

//

// CONTROLLER TYPE: Standalone / Serial

//

//

// LCD for Malyan M200 printers.

// This requires SDSUPPORT to be enabled

//

//#define MALYAN_LCD

//

// CONTROLLER TYPE: Keypad / Add-on

//

//

// RepRapWorld REPRAPWORLD_KEYPAD v1.1

// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626

//

// REPRAPWORLD_KEYPAD_MOVE_STEP sets how much should the robot move when a key

// is pressed, a value of 10.0 means 10mm per click.

//

//#define REPRAPWORLD_KEYPAD

//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0

//=============================================================================

//=============================== Extra Features ==============================

//=============================================================================

// @section extras

// Increase the FAN PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino

//#define FAST_PWM_FAN

// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency

// which is not as annoying as with the hardware PWM. On the other hand, if this frequency

// is too low, you should also increment SOFT_PWM_SCALE.

//#define FAN_SOFT_PWM

// Incrementing this by 1 will double the software PWM frequency,

// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.

// However, control resolution will be halved for each increment;

// at zero value, there are 128 effective control positions.

#define SOFT_PWM_SCALE 0

// If SOFT_PWM_SCALE is set to a value higher than 0, dithering can

// be used to mitigate the associated resolution loss. If enabled,

// some of the PWM cycles are stretched so on average the desired

// duty cycle is attained.

//#define SOFT_PWM_DITHER

// Temperature status LEDs that display the hotend and bed temperature.

// If all hotends, bed temperature, and target temperature are under 54C

// then the BLUE led is on. Otherwise the RED led is on. (1C hysteresis)

//#define TEMP_STAT_LEDS

// M240 Triggers a camera by emulating a Canon RC-1 Remote

// Data from: http://www.doc-diy.net/photo/rc-1_hacked/

//#define PHOTOGRAPH_PIN 23

// SkeinForge sends the wrong arc g-codes when using Arc Point as fillet procedure

//#define SF_ARC_FIX

// Support for the BariCUDA Paste Extruder

//#define BARICUDA

// Support for BlinkM/CyzRgb

//#define BLINKM

// Support for PCA9632 PWM LED driver

//#define PCA9632

/**

* RGB LED / LED Strip Control

*

* Enable support for an RGB LED connected to 5V digital pins, or

* an RGB Strip connected to MOSFETs controlled by digital pins.

*

* Adds the M150 command to set the LED (or LED strip) color.

* If pins are PWM capable (e.g., 4, 5, 6, 11) then a range of

* luminance values can be set from 0 to 255.

* For Neopixel LED an overall brightness parameter is also available.

*

* *** CAUTION ***

* LED Strips require a MOSFET Chip between PWM lines and LEDs,

* as the Arduino cannot handle the current the LEDs will require.

* Failure to follow this precaution can destroy your Arduino!

* NOTE: A separate 5V power supply is required! The Neopixel LED needs

* more current than the Arduino 5V linear regulator can produce.

* *** CAUTION ***

*

* LED Type. Enable only one of the following two options.

*

*/

//#define RGB_LED

//#define RGBW_LED

#if ENABLED(RGB_LED) || ENABLED(RGBW_LED)

#define RGB_LED_R_PIN 34

#define RGB_LED_G_PIN 43

#define RGB_LED_B_PIN 35

#define RGB_LED_W_PIN -1

#endif

// Support for Adafruit Neopixel LED driver

//#define NEOPIXEL_LED

#if ENABLED(NEOPIXEL_LED)

#define NEOPIXEL_TYPE NEO_GRBW // NEO_GRBW / NEO_GRB - four/three channel driver type (defined in Adafruit_NeoPixel.h)

#define NEOPIXEL_PIN 4 // LED driving pin on motherboard 4 => D4 (EXP2-5 on Printrboard) / 30 => PC7 (EXP3-13 on Rumba)

#define NEOPIXEL_PIXELS 30 // Number of LEDs in the strip

#define NEOPIXEL_IS_SEQUENTIAL // Sequential display for temperature change - LED by LED. Disable to change all LEDs at once.

#define NEOPIXEL_BRIGHTNESS 127 // Initial brightness (0-255)

//#define NEOPIXEL_STARTUP_TEST // Cycle through colors at startup

#endif

/**

* Printer Event LEDs

*

* During printing, the LEDs will reflect the printer status:

*

* - Gradually change from blue to violet as the heated bed gets to target temp

* - Gradually change from violet to red as the hotend gets to temperature

* - Change to white to illuminate work surface

* - Change to green once print has finished

* - Turn off after the print has finished and the user has pushed a button

*/

#if ENABLED(BLINKM) || ENABLED(RGB_LED) || ENABLED(RGBW_LED) || ENABLED(PCA9632) || ENABLED(NEOPIXEL_LED)

#define PRINTER_EVENT_LEDS

#endif

/**

* R/C SERVO support

* Sponsored by TrinityLabs, Reworked by codexmas

*/

/**

* Number of servos

*

* For some servo-related options NUM_SERVOS will be set automatically.

* Set this manually if there are extra servos needing manual control.

* Leave undefined or set to 0 to entirely disable the servo subsystem.

*/

#define NUM_SERVOS 1 // Servo index starts with 0 for M280 command

// Delay (in milliseconds) before the next move will start, to give the servo time to reach its target angle.

// 300ms is a good value but you can try less delay.

// If the servo can't reach the requested position, increase it.

#define SERVO_DELAY { 300 }

// Only power servos during movement, otherwise leave off to prevent jitter

//#define DEACTIVATE_SERVOS_AFTER_MOVE

#endif // CONFIGURATION_H

-----------------------------------
Ответы на вопросы
Кремень КБ Реклама
Кремень КМ Реклама