Фотополимерный 3D-принтер

3D-принтеры можно сортировать не только по применяемым технологиям печати, но и по используемым расходным материалам. В этом разделе мы рассмотрим устройства, использующие для построения моделей фотополимерные смолы.


Расходные материалы

Фотополимерные смолы – жидкие полимеры, затвердевающие при облучении светом. Как правило, такие материалы чувствительны к ультрафиолетовому диапазону, что обуславливает конструкцию фотополимерных принтеров. Одним из распространенных элементов конструкции служит прозрачный цветной колпак или корпус из материала, фильтрующего ультрафиолетовое излучение. Это делается как для защиты глаз пользователя, так и для защиты расходного материала внутри принтера от воздействия солнечных лучей и фонового освещения.


Фотополимерная смола загружается в 3D-принтер Form 1

Физические свойства смол после полимеризации широко рознятся. Доступны как твердые, так и гибкие варианты, прозрачные и матовые. Также доступен широкий выбор цветов. Консистенция смол и время засветки также варьируются, поэтому при выборе принтера стоит учитывать и ассортимент совместимых материалов.

Последним аспектом, на который стоит обращать внимание при выборе материала, это его токсичность. Существуют как довольно токсичные варианты, так и биологически безопасные.

Стоимость расходных материалов можно считать ахиллесовой пятой фотополимерной печати. Сами установки уже достигают вполне приемлемых ценовых уровней, но найти недорогие фотополимерные смолы пока еще достаточно сложно. Стоит надеяться, что распространение недорогих фотополимерных принтеров приведет к увеличению объемов производства расходных материалов и снижению цен.

Лазерная стереолитография (SLA)


Модель, полученная с помощью SLA-печати

Первенец фотополимерной печати и современной 3D-печати в целом. Технология была разработана в 1984 году Чарльзом Холлом, впоследствии основавшим компанию 3D Systems.

SLA-принтеры используют лазерные излучатели для отверждения расходного фотополимерного материала.

Типичный SLA-принтер состоит из кюветы с расходным материалом, сидящей под рабочей платформой, приводимой в вертикальное движение подъемно-опускающим механизмом.

Как вариант, в движение может приводиться сама кювета – важно лишь относительное перемещение платформы и контейнера. Над кюветой располагается лазерный излучатель и зеркальная система отклонения лазерного луча.

В процессе печати платформа погружается в расходный материал на толщину одного слоя цифровой модели.

Так как фотополимерные смолы могут быть достаточно густыми, для ускорения процесса зачастую применяется выравнивающий механизм.


Схема работы SLA принтера

После выравнивания начинается процесс засветки материала. Засветка производится лазерным облучением. Большинство фотополимерных смол рассчитаны на застывание (полимеризацию) при воздействии ультрафиолетового света, что определяет выбор частоты лазерного излучения. Движение луча по осям X и Y определяется работой отклоняющих зеркал.

После завершения вычерчивания слоя, платформа погружается в материал на толщину еще одного слоя, и процесс повторяется с вычерчиванием следующего слоя цифровой модели.


Анимация процесса построения модели

SLA-печать занимает достаточно длительное время, и принтеры, использующие этот метод, как правило, имеют относительно небольшие области построения.

Это объясняется в основном дороговизной лазерных излучателей: печать больших объектов одним лазером будет занимать слишком много времени, а установка дополнительных излучателей и зеркал усложнит конструкцию, увеличит габариты установки и поднимет цену до неприемлемого для большинства пользователей уровня.

Несмотря на успех этой технологии, более перспективным, хотя и весьма схожим методом, считается проекторная стереолитография.

Проекторная стереолитография (DLP)


Настольный DLP принтер Formlabs Form 1. Обратите внимание на защитный прозрачный корпус

Близкий родственник лазерной стереолитографии, этот метод использует цифровые светодиодные проекторы вместо лазерных установок с зеркальными системами отклонения. Метод стал популярным благодаря развитию технологии производства недорогих цифровых проекторов с высоким разрешением силами компании Texas Instruments.

Засветка слоев производится с помощью цифрового проектора, высвечивающего шаблоны целого слоя, что и отличает этот метод от SLA, где «картинка» вырисовывается поступательно с помощью ультрафиолетового лазера.

Подобный подход ранее использовался на установках типа SGC, но в этой технологии применялись физические фотошаблоны, что делало процесс дорогостоящим, трудоемким, медленным и шумным.

На данный момент продолжает существование технология FTI – развитие SGC, практически неотличимое от DLP-печати, так как в ней тоже применяются цифровые светодиодные проекторы.


Конструкция DLP-принтера

Одновременная засветка целого слоя с помощью проекторов позволяет значительно ускорить процесс печати даже по сравнению с SLA-принтерами, имеющими высокую скорость сканирования (т.е. перемещения луча).

Кроме того, такие принтеры менее чувствительны к грубому физическому воздействию ввиду отсутствия деликатных зеркальных систем.

Отсутствие механических зеркальных систем позволяет увеличить точность. Наконец, стоимость проекторов выгодно отличает их от лазерных систем.

Размер проекции может быть весьма значительным, достигая среднестатистических показателей популярных FDM-принтеров.

Интересной особенностью DLP-принтеров является возможность «обратной» или «перевернутой печати».

В этом случае проектор устанавливается под прозрачной (важен выбор материала для прозрачности в отношении ультрафиолетового света) кюветой, а платформа не погружается в материал, а постепенно поднимается, вытягивая слои засвеченного полимера.

Такой подход позволяет избавиться от выравнивающего механизма и добиться даже более высокого разрешения по оси Z, чем SLA-принтеры.

Кроме того, размер моделей по высоте не ограничивается глубиной кюветы, что благоприятно сказывается на габаритах принтера и на возможности увеличения зоны построения.

Многоструйная печать (MJM и PolyJet)


MJM-принтер 3D Systems ProJet 3500HDMax

Технологии MJM и PolyJet практически неотличимы друг от друга. Разница в названиях происходит из соответствующих патентов: технология Multi Jet Modeling принадлежит компании 3D Systems, а PolyJet – конкурирующей компании Stratasys.

Сам принцип многоструйной полимерной печати был выработан израильской компанией Objet, со временем ставшей одним из подразделений Stratasys.

Технология многоструйной печати сочетает черты струйной трехмерной печати (3DP) и проекторной стереолитографии (DLP).


Принцип работы MJM PolyJet принтера

Построение моделей происходит путем напыления фотополимера с помощью линейных массивов, состоящих из множества сопел.

Нанесенный слой немедленно засвечивается ультрафиолетовыми лампами – как правило, два процесса происходят одновременно.

К тому моменту, когда массив достигает конца рабочей камеры, ранее нанесенный материал достаточно тверд для печати нового слоя.


Композитные модели, созданные на стоматологическом принтере ProJet 3500 DP

Такой подход позволяет добиться весьма высокой скорости печати, но отличается высокой сложностью конструкции, что негативно сказывается на стоимости подобных установок и ограничивает их распространение профессиональным применением.

Одним из плюсов технологий MJM и PolyJet является возможность создания композитных конструкций из фотополимерных смол с различными физическими характеристиками.

Таким образом, возможно создание моделей с легкоудаляемыми опорами, использование нескольких цветов и параллельное использование гибких и твердых материалов в пределах одной модели.

3D-ручки


3D-ручка CreoPop для трехмерного рисования фотополимерными смолами

В последнее время появилась мода на ручные печатные устройства, называемые 3D-ручками. На данный момент существует три основных варианта таких устройств: капельно-струйные ручки (DOD), получившие название BioPen и использующиеся в разработке новых методов лечения поврежденных тканей, FDM 3D-ручки, являющиеся ручными экструдерами (по сути, аналогом привычных термоклеевых пистолетов, но использующие термопластики) и наработки по 3D-рисованию фотополимерными смолами.

Первым «ручным фотополимерным принтером» стала 3D-ручка CreoPop. Конструкция этого устройства достаточно проста, ибо самую сложную функцию, позиционирование, выполняет сам пользователь. Ручка лишь выдавливает смолу через кончик, окруженный светодиодными излучателями.


3D-ручка CreoPop в действии

Таким образом, смола затвердевает сразу после нанесения, позволяя в буквальном смысле рисовать по воздуху.

Преимуществом таких ручек над FDM-аналогами является низкая температура работы – в устройстве отсутствуют какие-либо нагревательные элементы. В итоге, такими ручками можно рисовать даже на коже.

Кроме того, богатый выбор фотополимерных смол с различными физическими свойствами применим и для работы с такими устройствами, что значительно расширяет диапазон возможного применения. Как минимум, это относительно недорогая, но занимательная игрушка.

Единственным недостатком можно считать относительно высокую стоимость расходных материалов, однако вряд ли такие устройства будут требовать больших объемов фотополимерной смолы при применении в быту.

Дополнительная засветка


Окончательная засветка фотополимерных моделей в самодельной камере

Полное отверждение моделей может занять достаточно длительное время, поэтому модели при SLA и DLP-печати подвергаются лишь частичной полимеризации, достаточной для сохранения физической формы детали.

После изготовления модели, как правило, помещаются в камеры, оснащенные ультрафиолетовыми лампами, до полного отвердения. Само собой, при возможности можно просто выложить модели на солнце – эффект будет тот же самый.

Стоит лишь иметь в виду, что обычное стекло практически не пропускает ультрафиолетовый свет, поэтому воздействие солнечных лучей должно быть прямым.

При желании можно использовать контейнер из прозрачного для ультрафиолета кварцевого стекла.


Перейти на главную страницу Энциклопедии 3D-печати